A328647
Irregular triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of (1+x)/(x^2-3x+1)).
Original entry on oeis.org
1, 1, 4, -2, -1, 11, -12, 3, 1, 29, -44, 24, -4, -1, 76, -145, 110, -40, 5, 1, 199, -456, 435, -220, 60, -6, -1, 521, -1393, 1596, -1015, 385, -84, 7, 1, 1364, -4168, 5572, -4256, 2030, -616, 112, -8, -1, 3571, -12276, 18756, -16716, 9576, -3654, 924, -144
Offset: 0
First eight rows:
1, 1;
4, -2, -1;
11, -12, 3, 1;
29, -44, 24, -4, -1;
76, -145, 110, -40, 5, 1;
199, -456, 435, -220, 60, -6, -1;
521, -1393, 1596, -1015, 385, -84, 7, 1;
1364, -4168, 5572, -4256, 2030, -616, 112, -8, -1;
First eight polynomials:
1 + x
4 - 2 x - x^2
11 - 12 x + 3 x^2 + x^3
29 - 44 x + 24 x^2 - 4 x^3 - x^4
76 - 145 x + 110 x^2 - 40 x^3 + 5 x^4 + x^5
199 - 456 x + 435 x^2 - 220 x^3 + 60 x^4 - 6 x^5 - x^6
521 - 1393 x + 1596 x^2 - 1015 x^3 + 385 x^4 - 84 x^5 + 7 x^6 + x^7
1364 - 4168 x + 5572 x^2 - 4256 x^3 + 2030 x^4 - 616 x^5 + 112 x^6 - 8 x^7 - x^8
-
g[x_, n_] := Numerator[ Factor[D[(1 + x)/(x^2 - 3 x + 1), {x, n}]]]
Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* polynomials *)
h[n_] := CoefficientList[g[x, n]/n!, x]
Table[h[n], {n, 0, 10}]
Column[%] (* A328647 array *)
A057281
Coefficient triangle of polynomials (falling powers) related to Fibonacci convolutions. Companion triangle to A057282.
Original entry on oeis.org
1, 5, 16, 20, 160, 300, 75, 1075, 4850, 6840, 275, 6100, 48175, 159650, 186120, 1000, 31550, 379700, 2168650, 5846700, 5916240, 3625, 153875, 2605175, 22426825, 103057800, 238437900, 215717040, 13125, 720375, 16273875, 195469125
Offset: 0
k=2: F2(n)=((5*n^2+21*n+16)*F(n+2)+(5*n^2+27*n+34)*F(n+1))/50, F(n)=A000045(n); see A001628.
A084329
a(0)=0, a(1)=1, a(n)=20a(n-1)-20a(n-2).
Original entry on oeis.org
0, 1, 20, 380, 7200, 136400, 2584000, 48952000, 927360000, 17568160000, 332816000000, 6304956800000, 119442816000000, 2262757184000000, 42866287360000000, 812070603520000000, 15384086323200000000
Offset: 0
-
Union[Flatten[NestList[{#[[2]],20(#[[2]]-#[[1]])}&,{0,1},20]]] (* Harvey P. Dale, Feb 24 2011 *)
LinearRecurrence[{20,-20},{0,1},20] (* Harvey P. Dale, Nov 29 2019 *)
-
a(n)=(1/8)*sum(k=0,n,binomial(n,k)*fibonacci(6*k))
-
a(n)=imag((6+8*quadgen(5))^n)/8
A098111
Inverse binomial transform of A098149.
Original entry on oeis.org
1, 0, -5, -25, -100, -375, -1375, -5000, -18125, -65625, -237500, -859375, -3109375, -11250000, -40703125, -147265625, -532812500, -1927734375, -6974609375, -25234375000, -91298828125, -330322265625, -1195117187500, -4323974609375, -15644287109375, -56601562500000
Offset: 0
Powers of rho(10) in the Q(rho(10)) power basis for n = 5: rho(10)^5 = 0*1 + a(2)*rho(10) + 0*rho(10)^2 + b(1)*rho(10)^3 = -5*rho(10) + 5*rho(10)^3. - _Wolfdieter Lang_, Oct 02 2013
A202551
Triangle T(n,k), read by rows, given by (1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, -1, 0, -1, 1, -1, 1, 1, -1, -1, 3, -2, -1, 1, 0, 2, -5, 3, 1, -1, 1, -2, -2, 7, -4, -1, 1, 1, -5, 7, 1, -9, 5, 1, -1, 0, -3, 12, -15, 1, 11, -6, -1, 1, -1, 3, 3, -21, 26, -4, -13, 7, 1, -1
Offset: 0
Triangle begins :
1
1, -1
0, -1, 1
-1, 1, 1, -1
-1, 3, -2, -1, 1
0, 2, -5, 3, 1, -1
A084328
a(0)=0, a(1)=1; a(n) = 13*a(n-1) - 11*a(n-2).
Original entry on oeis.org
0, 1, 13, 158, 1911, 23105, 279344, 3377317, 40832337, 493669894, 5968552915, 72160819061, 872436565728, 10547906344793, 127525980259301, 1541810773578190, 18640754273664159, 225369887048273977
Offset: 0
-
Join[{a=0,b=1},Table[c=13*b-11*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011 *)
-
a(n)=(1/5)*sum(k=0,n,binomial(n,k)*fibonacci(5*k));
-
[lucas_number1(n,13,11) for n in range(0, 18)] # Zerinvary Lajos, Apr 29 2009
A087426
a(n) = S(n,4) where S(n,m) = sum(k=0,n,binomial(n,k)*Fibonacci(m*k)).
Original entry on oeis.org
0, 3, 27, 216, 1701, 13365, 104976, 824499, 6475707, 50860872, 399466485, 3137450517, 24641856288, 193539651939, 1520080160859, 11938864580280, 93769059774789, 736471756750581, 5784324272782128, 45430672644283923
Offset: 0
A260304
a(n) = 5*a(n-1) - 5*a(n-2) for n>1, a(0)=2, a(1)=3.
Original entry on oeis.org
2, 3, 5, 10, 25, 75, 250, 875, 3125, 11250, 40625, 146875, 531250, 1921875, 6953125, 25156250, 91015625, 329296875, 1191406250, 4310546875, 15595703125, 56425781250, 204150390625, 738623046875, 2672363281250, 9668701171875, 34981689453125, 126564941406250
Offset: 0
-
[n le 2 select n+1 else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 23 2015
-
Table[((5 + 2 Sqrt[5]) ((5 - Sqrt[5])/2)^n + (5 - 2 Sqrt[5]) ((5 + Sqrt[5])/2)^n)/5, {n, 0, 30}]
RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == 5 a[n - 1] - 5 a[n - 2]}, a, {n, 0, 30}] (* Bruno Berselli, Nov 23 2015 *)
-
a(n)=([0,1; -5,5]^n*[2;3])[1,1] \\ Charles R Greathouse IV, Jul 26 2016
A336602
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), with initial terms a(0)=1, a(1)=7, a(2)=35, a(3)=154.
Original entry on oeis.org
1, 7, 35, 154, 632, 2487, 9529, 35875, 133471, 492538, 1807268, 6604891, 24069905, 87539199, 317907067, 1153307002, 4180842064, 15147734815, 54860799881, 198634274203, 719047882103, 2602540622106, 9418700937340, 34084040705539, 123335178991777, 446277892754167, 1614771692630099
Offset: 0
Comments