cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A084551 Primes which are a concatenation of five consecutive numbers.

Original entry on oeis.org

1516171819, 3940414243, 5758596061, 6566676869, 7778798081, 8384858687, 8990919293, 129130131132133, 153154155156157, 197198199200201, 213214215216217, 239240241242243, 269270271272273, 387388389390391, 399400401402403, 443444445446447, 459460461462463
Offset: 1

Views

Author

Zak Seidov, Jun 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[IntegerDigits[n+Range[-2,2]]]],{n,2,500}],PrimeQ] (* Jayanta Basu, May 24 2013 *)
    Select[FromDigits[Flatten[IntegerDigits[#]]]&/@Partition[Range[600],5,1], PrimeQ] (* Harvey P. Dale, Nov 11 2014 *)

A210512 Primes formed by concatenating k, k and 3 for k >= 1.

Original entry on oeis.org

113, 223, 443, 773, 883, 10103, 11113, 14143, 25253, 26263, 28283, 32323, 35353, 41413, 50503, 61613, 68683, 71713, 77773, 80803, 83833, 85853, 88883, 97973, 1001003, 1011013, 1101103, 1131133, 1161163, 1181183, 1221223, 1241243, 1281283, 1331333, 1361363, 1391393
Offset: 1

Views

Author

Abhiram R Devesh, Jan 26 2013

Keywords

Comments

This sequence is similar to A030458, A052089 and A210511.
k must not be a multiple of 3, otherwise the concatenation of k, k and 3 will also be a multiple of 3 and therefore not prime. This is a necessary but not sufficient condition.
Some of the terms can be found with this simple process: 5 - 3 = 2 = 1 + 1 giving 113; 7 - 3 = 4 = 2 + 2 giving 223; 11 - 3 = 8 = 4 + 4 giving 443; 17 - 3 = 14 = 7 + 7 giving 773; 19 - 3 = 16 = 8 + 8 giving 883. - J. M. Bergot, Jul 25 2022

Crossrefs

Programs

  • Magma
    [nn3: n in [1..140] | IsPrime(nn3) where nn3 is Seqint([3] cat Intseq(n) cat Intseq(n))]; // Bruno Berselli, Jan 30 2013
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {3}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 27 2013 *)
  • Python
    import numpy as np
    from functools import reduce
    def factors(n):
        return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) +1) if n % i == 0))
    for i in range(1, 1000):
        p1=int(str(i)+str(i)+"3")
        if len(factors(p1))<3:
            print(p1, end=',')
    
  • Python
    from sympy import isprime
    def xf(n): return int(str(n)*2+'3')
    def ok(n): return isprime(xf(n))
    print(list(map(xf, filter(ok, range(1, 140))))) # Michael S. Branicky, May 21 2021
    

A210513 Primes formed by concatenating k, k, and 7.

Original entry on oeis.org

227, 337, 557, 887, 997, 11117, 24247, 26267, 27277, 29297, 30307, 32327, 39397, 48487, 51517, 54547, 60607, 62627, 65657, 68687, 69697, 72727, 74747, 78787, 81817, 87877, 89897, 90907, 92927, 93937, 95957, 101710177, 101910197, 103110317, 103410347, 103810387
Offset: 1

Views

Author

Abhiram R Devesh, Jan 26 2013

Keywords

Comments

This sequence is similar to A030458, A052089, and A092994.
Base considered is 10.
Observations:
- k cannot be a multiple of 7.
- k cannot have a digital root 7 as the sum of the digits would be divisible by 3.
- There is no k between 100 and 1000 that can form a prime number of this form after 95957 the next prime is 101710177.
- k cannot have a digital root equal to 1 or 4, because then in the concatenation it contributes 2 or 8 to the digital root of the number, and that number is then divisible by 3.

Examples

			For k = 2, a(1) = 227.
For k = 3, a(2) = 337.
For k = 5, a(3) = 557.
For k = 8, a(4) = 887.
For k = 9, a(5) = 997.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {7}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Feb 01 2013 *)
  • Python
    import numpy as np
    from functools import reduce
    def factors(n):
        return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))
    for i in range(1, 2000):
        p1=int(str(i)+str(i)+"7")
        if len(factors(p1))<3:
            print(p1, end=',')
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from filter(isprime, (int(str(k)+str(k)+'7') for k in count(1)))
    print(list(islice(agen(), 36))) # Michael S. Branicky, Jul 26 2022

Extensions

a(34) and beyond from Michael S. Branicky, Jul 26 2022

A210514 Prime numbers generated by concatenating k, k, and 9.

Original entry on oeis.org

229, 449, 11119, 14149, 22229, 28289, 31319, 37379, 44449, 49499, 52529, 56569, 67679, 70709, 71719, 80809, 86869, 89899, 94949, 95959, 1061069, 1101109, 1131139, 1151159, 1161169, 1191199, 1241249, 1251259, 1331339, 1401409, 1431439, 1481489, 1571579, 1601609
Offset: 1

Views

Author

Abhiram R Devesh, Jan 26 2013

Keywords

Comments

This series is similar to A030458 and A052089.
Base considered is 10.

Examples

			For k=2, a(1)= 229.
For k=4, a(2)= 449.
For k=11, a(3)= 11119.
For k=14, a(4)= 14149.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[Join[IntegerDigits/@{n,n},{9}]]],{n,200}],PrimeQ] (* Harvey P. Dale, Apr 23 2015 *)
  • Python
    import numpy as np
    from functools import reduce
    def factors(n):
        return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))
    for i in range(1, 2000):
        p1=int(str(i)+str(i)+"1")
        if len(factors(p1))<3:
            print(p1, end=',')
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from filter(isprime, (int(str(k)+str(k)+'9') for k in count(1)))
    print(list(islice(agen(), 34))) # Michael S. Branicky, Jul 26 2022

Extensions

a(27) and beyond from Michael S. Branicky, Jul 26 2022

A236551 Primes formed from concatenation of PrimePi(n) and prime(n).

Original entry on oeis.org

2, 13, 311, 313, 419, 641, 643, 647, 653, 761, 983, 997, 9103, 11131, 11149, 12157, 12163, 14197, 15227, 15233, 18307, 18311, 18313, 20353, 20359, 21379, 21383, 21397, 22409, 23431, 24499, 25523, 25541, 26557, 29599, 30631, 30643, 30661, 30677, 31727, 33773
Offset: 1

Views

Author

K. D. Bajpai, Jan 28 2014

Keywords

Examples

			pi(6) = 3: prime(6) = 13. Concatenation of 3 and 13 gives 313 which is prime and appears in the sequence.
pi(8) = 4: prime(6) = 19. Concatenation of 4 and 19 gives 419 which is prime and appears in the sequence.
		

Crossrefs

Cf. A030458 (primes: concatenation of n and n+1), A084667 (primes: concatenation of n and prime(n)), A084669 (primes: concatenation of prime(n) and n).

Programs

  • Maple
    with(StringTools): with(numtheory): KD := proc() local a,b,d; a:=pi(n); b:=ithprime(n); d:=parse(cat(a,b));  if isprime (d) then RETURN (d); fi;  end: seq(KD(), n=1..300);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[PrimePi[n]], IntegerDigits[Prime[n]]}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 28 2014 *)

A287244 Indices n for which concatenation of the numbers from n to n + 9 is prime.

Original entry on oeis.org

4, 20, 68, 88, 122, 140, 188, 200, 212, 220, 224, 244, 254, 374, 460, 490, 502, 518, 550, 568, 632, 688, 734, 814, 832, 884, 898, 908, 928, 982, 1022, 1108, 1472, 1490, 1498, 1514, 1544, 1580, 1894, 1954, 2074, 2230, 2294, 2384, 2492, 2524, 2722
Offset: 1

Views

Author

XU Pingya, May 22 2017

Keywords

Examples

			a(1) = 4, since 45678910111213 is prime.
		

Crossrefs

Cf. A030458.

Programs

  • Maple
    filter:= proc(n) isprime(parse(cat($n .. n+9))) end proc:
    select(filter, 2*[$1..10^4]); # Robert Israel, Jan 08 2024
  • Mathematica
    Position[Map[FromDigits@ Flatten@ IntegerDigits@ # &, Partition[Range@ 2800, 10, 1]], p_ /; PrimeQ@ p][[All, 1]] (* Michael De Vlieger, May 22 2017 *)

A287310 Primes that can be generated by the concatenation in base 8, in ascending order, of two consecutive integers read in base 10.

Original entry on oeis.org

19, 37, 521, 911, 1171, 1301, 1951, 2081, 2341, 2731, 2861, 3121, 3251, 3511, 32833, 35911, 37963, 43093, 44119, 46171, 53353, 56431, 57457, 59509, 61561, 68743, 71821, 77977, 85159, 87211, 88237, 90289, 95419, 99523, 100549, 114913, 117991, 123121, 124147, 126199
Offset: 1

Views

Author

Paolo P. Lava, May 24 2017

Keywords

Comments

Primes of the form (1+8^k) m + 1 where m+1 < 8^k < 8(m+1). - Robert Israel, May 24 2017

Examples

			2 and 3 in base 8 are 2_8 and 3_8, and concat(2,3) = 23_8 in base 10 is 19;
8 and 9 in base 8 are 10_8 and 11_8 and concat(10,11) = 1011_8 in base 10 is 521.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,8),i=1..1000);
  • Mathematica
    With[{b = 8}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 250, 2, 1]], PrimeQ]] (* Michael De Vlieger, May 25 2017 *)

A032663 Primes that are the smallest decimal concatenations of n with n + (0,1,2,3,...).

Original entry on oeis.org

11, 23, 13, 47, 37, 1217, 17, 29, 19, 211, 313, 617, 113, 619, 317, 419, 521, 421, 523, 827, 727, 223, 2143, 1033, 1741, 227, 127, 229, 331, 433, 131, 233, 739, 1447, 337, 439, 137, 239, 139, 241, 1151, 647, 547, 1861, 347, 449, 349, 653, 149, 251, 151, 859
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

First terms of sequences '11', A030458, A032625-A032632,continued with displacements d > 9.

Examples

			6th term is prime 1217: 17 - 12 = displacement 5 (=6-1).
		

Crossrefs

Cf. A032662.

Extensions

Edited by Charles R Greathouse IV, Apr 30 2010

A085720 Start of a run of 7 successive numbers which when concatenated form a prime.

Original entry on oeis.org

7, 37, 157, 185, 187, 271, 301, 355, 475, 485, 523, 533, 577, 611, 653, 661, 667, 731, 733, 755, 761, 791, 853, 911, 913, 937, 983, 1085, 1111, 1187, 1205, 1253, 1397, 1417, 1585, 1631, 1655, 1685, 1697, 1711, 1723, 1841, 1907, 1975, 2035, 2077, 2105, 2185
Offset: 1

Views

Author

Zak Seidov, Jun 27 2003

Keywords

Comments

Concatenation of three and six successive numbers are always composite.
Primes as concatenation of two, four and five successive numbers are in A030458, A030471, A052087, A052088, A052089.

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[ Flatten[ Table[ IntegerDigits[i], {i, n, n + 6}]]]; Select[ Range[2190], PrimeQ[ f[ # ]] & ]
    Select[Range[2500],PrimeQ[FromDigits[Flatten[IntegerDigits/@Range[#,#+6]]]]&] (* Harvey P. Dale, Aug 15 2021 *)

Extensions

Edited by Robert G. Wilson v, Jun 28 2003
Edited by Charles R Greathouse IV, Apr 24 2010

A134428 Primes formed by concatenating k with k+1, where k+1 is a prime.

Original entry on oeis.org

23, 67, 1213, 3637, 4243, 7879, 9697, 102103, 108109, 126127, 138139, 150151, 156157, 180181, 192193, 270271, 276277, 312313, 330331, 378379, 420421, 432433, 438439, 456457, 522523, 540541, 546547, 576577, 600601, 606607, 612613, 618619
Offset: 1

Views

Author

Keywords

Comments

Subset of A030458 and A052087.

Crossrefs

Programs

  • Maple
    P:=proc(n) local a;
    a:=(ithprime(n)-1)*10^(ilog10(ithprime(n))+1)+ithprime(n);
    if isprime(a) then a; fi; end: seq(P(i),i=1..10^3);
  • Mathematica
    Select[Table[(p-1)*10^IntegerLength[p]+p,{p,Prime[Range[200]]}],PrimeQ] (* Harvey P. Dale, Aug 23 2019 *)
Previous Showing 11-20 of 34 results. Next