cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 82 results. Next

A183062 Numbers with 59 divisors.

Original entry on oeis.org

288230376151711744, 4710128697246244834921603689, 34694469519536141888238489627838134765625, 10367793076318844190248738727596255138212949486449
Offset: 1

Views

Author

Omar E. Pol, Jul 31 2011

Keywords

Comments

Also, 58th powers of primes.
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n) = A000040(n)^(59-1) = A000040(n)^58.
A000005(a(n)) = 59.

A183085 Numbers with 61 divisors.

Original entry on oeis.org

1152921504606846976, 42391158275216203514294433201, 867361737988403547205962240695953369140625, 508021860739623365322188197652216501772434524836001
Offset: 1

Views

Author

Omar E. Pol, Jul 31 2011

Keywords

Comments

Also, 60th powers of primes.
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

  • PARI
    a(n)=prime(n)^60

Formula

a(n) = A000040(n)^(61-1) = A000040(n)^60.
A000005(a(n)) = 61.

A133537 Sum of sixth powers of two consecutive primes.

Original entry on oeis.org

793, 16354, 133274, 1889210, 6598370, 28964378, 71183450, 195081770, 742859210, 1482327002, 3453230090, 7315830650, 11071467290, 17100578378, 32943576458, 64344894770, 93700908002, 141978756530, 218558666090, 279434510210
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=793 because 2^6+3^6=793.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A030516(n) + A030516(n+1). - Michel Marcus, Nov 09 2013

A131993 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4 + prime(n)^5.

Original entry on oeis.org

63, 364, 3906, 19608, 177156, 402234, 1508598, 2613660, 6728904, 21243690, 29583456, 71270178, 118752606, 150508644, 234330768, 426237714, 727250580, 858672906, 1370581548, 1830004056, 2101864254, 3116505840, 3987077724
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

a(n) = 1 + A131992(n)*A000040(n).

Crossrefs

Programs

  • Magma
    [1+(&+[NthPrime(n)^(k): k in [1..5]]): n in [1..100]]; // Berselli - Librandi, Apr 20 2011
  • Mathematica
    Total[#^Range[0,5]]&/@Prime[Range[30]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

a(n) = (A030516(n) - 1)/A006093(n).

A255231 The number of factorizations n = Product_i b_i^e_i, where all bases b_i are distinct, and all exponents e_i are distinct >=1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Saverio Picozzi, Feb 18 2015

Keywords

Comments

Not multiplicative: a(48) = a(2^4*3) = 5 <> a(2^4)*a(3) = 4*1 = 4. - R. J. Mathar, Nov 05 2016

Examples

			From _R. J. Mathar_, Nov 05 2016: (Start)
a(4)=2: 4^1 = 2^2.
a(8)=2: 8^1 = 2^3.
a(9)=2: 9^1 = 3^2.
a(12)=2: 12^1 = 2^2*3^1.
a(16)=4: 16^1 = 4^2 = 2^2*4^1 = 2^4.
a(18)=2: 18^1 = 2*3^2.
a(20)=2: 20^1 = 2^2*5^1.
a(24)=3: 24^1 = 2^2*6^1 = 2^3*3^1.
a(32)=5: 32^1 = 2^1*4^2 = 2^2*8^1 = 2^3*4^1 = 2^5.
a(36)=4: 36^1 = 6^2 = 3^2*4^1 = 2^2*9^1.
a(48)=5: 48^1 = 3^1*4^2 = 2^2*12^1 = 2^3*6^1 = 2^4*3^1.
a(60)=2 : 60^1 = 2^2*15^1.
a(64)=7: 64^1 = 8^2 = 4^3 = 2^2*16^1 = 2^3*8^1 = 2^4*4^1 = 2^6.
a(72)=6 : 72^1 = 3^2*8^1 = 2^1*6^2 = 2^2*18^1 = 2^3*9^1 = 2^3*3^2.
(End)
		

Crossrefs

Cf. A000688 (b_i not necessarily distinct).

Programs

  • Maple
    # Count solutions for products if n = dvs_i^exps(i) where i=1..pividx are fixed
    Apiv := proc(n,dvs,exps,pividx)
        local dvscnt, expscopy,i,a,expsrt,e ;
        dvscnt := nops(dvs) ;
        a := 0 ;
        if pividx > dvscnt then
            # have exhausted the exponent list: leave of the recursion
            # check that dvs_i^exps(i) is a representation
            if n = mul( op(i,dvs)^op(i,exps),i=1..dvscnt) then
                # construct list of non-0 exponents
                expsrt := [];
                for i from 1 to dvscnt do
                    if op(i,exps) > 0 then
                        expsrt := [op(expsrt),op(i,exps)] ;
                    end if;
                end do;
                # check that list is duplicate-free
                if nops(expsrt) = nops( convert(expsrt,set)) then
                    return 1;
                else
                    return 0;
                end if;
            else
                return 0 ;
            end if;
        end if;
        # need a local copy of the list to modify it
        expscopy := [] ;
        for i from 1 to nops(exps) do
            expscopy := [op(expscopy),op(i,exps)] ;
        end do:
        # loop over all exponents assigned to the next base in the list.
        for e from 0 do
            candf := op(pividx,dvs)^e ;
            if modp(n,candf) <> 0 then
                break;
            end if;
            # assign e to the local copy of exponents
            expscopy := subsop(pividx=e,expscopy) ;
            a := a+procname(n,dvs,expscopy,pividx+1) ;
        end do:
        return a;
    end proc:
    A255231 := proc(n)
        local dvs,dvscnt,exps ;
        if n = 1 then
            return 1;
        end if;
        # candidates for the bases are all divisors except 1
        dvs := convert(numtheory[divisors](n) minus {1},list) ;
        dvscnt := nops(dvs) ;
        # list of exponents starts at all-0 and is
        # increased recursively
        exps := [seq(0,e=1..dvscnt)] ;
        # take any subset of dvs for the bases, i.e. exponents 0 upwards
        Apiv(n,dvs,exps,1) ;
    end proc:
    seq(A255231(n),n=1..120) ; # R. J. Mathar, Nov 05 2016

Formula

a(n)=1 for all n in A005117. a(n)=2 for all n in A001248 and for all n in A054753 and for all n in A085987 and for all n in A030078. a(n)=3 for all n in A065036. a(n)=4 for all n in A085986 and for all n in A030514. a(n)=5 for all n in A178739, all n in A179644 and for all n in A050997. a(n)=6 for all n in A143610, all n in A162142 and all n in A178740. a(n)=7 for all n in A030516. a(n)=9 for all n in A189988 and all n in A189987. a(n)=10 for all n in A092759. a(n) = 11 for all n in A179664. a(n)=12 for all n in A179646. - R. J. Mathar, Nov 05 2016, May 20 2017

Extensions

Values corrected. Incorrect comments removed. - R. J. Mathar, Nov 05 2016

A073915 Triangle read by rows in which the n-th row contains the first n numbers with n divisors.

Original entry on oeis.org

1, 2, 3, 4, 9, 25, 6, 8, 10, 14, 16, 81, 625, 2401, 14641, 12, 18, 20, 28, 32, 44, 64, 729, 15625, 117649, 1771561, 4826809, 24137569, 24, 30, 40, 42, 54, 56, 66, 70, 36, 100, 196, 225, 256, 441, 484, 676, 1089, 48, 80, 112, 162, 176, 208, 272, 304, 368, 405
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Comments

The first row contains the 1. The 2nd row contains the beginning of A000040. The 3rd contains the beginning of A001248, the 4th through 7th A030513 to A030516. The 8th through 20th rows come from A030626 to A030638. - R. J. Mathar, Mar 23 2007

Examples

			1;
2,3;
4,9,25;
6,8,10,14;
16,81,625,2401,14641;
...
		

Crossrefs

Cf. A073916.

Programs

  • Mathematica
    d = Table[Length[Divisors[n]], {n, 2000}]; t = {}; n = 0; ok = True; While[ok, n++; If[PrimeQ[n], AppendTo[t, Prime[Range[n]]^(n - 1)], c = Flatten[Position[d, n, 1, n]]; If[Length[c] >= n, AppendTo[t, c], ok = False]]]; Flatten[t] (* T. D. Noe, Jun 23 2013 *)

Extensions

Corrected and extended by Sascha Kurz, Jan 28 2003

A138409 a(n) = prime(n)^6 - prime(n)^2.

Original entry on oeis.org

60, 720, 15600, 117600, 1771440, 4826640, 24137280, 47045520, 148035360, 594822480, 887502720, 2565725040, 4750102560, 6321361200, 10779213120, 22164358320, 42180530160, 51520370640, 90458377680, 128100278880
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime((n))^6 - NthPrime((n))^2: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^6 - p^2], {n, 1, 50}]; a
    #^6-#^2&/@Prime[Range[20]] (* Harvey P. Dale, Jul 04 2023 *)
  • PARI
    forprime(p=2,1e3,print1(p^6-p^2", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

From Elmo R. Oliveira, Jan 17 2023: (Start)
a(n) = A030516(n) - A001248(n).
a(n) = 2 * A138441(n).
a(n) = A001248(n) * (A030514(n) - 1). (End)

A232106 Number of groups of order prime(n)^6.

Original entry on oeis.org

267, 504, 684, 860, 1192, 1476, 1944, 2264, 2876, 4068, 4540, 6012, 7064, 7664, 8852, 10908, 13136, 14012, 16520, 18292, 19296, 22244, 24296, 27648, 32472, 34964, 36284, 38912, 40356, 43128, 53780, 56992, 62064, 63824, 72828, 74740, 80532, 86504, 90572, 96948
Offset: 1

Views

Author

Eric M. Schmidt, Nov 21 2013

Keywords

Comments

Isomorphism types of groups and nilpotent Lie rings with order prime(n)^6.

Crossrefs

Programs

  • GAP
    A232106 := Concatenation([267, 504], List(Filtered([5..10^5], IsPrime), p -> 3 * p^2 + 39 * p + 344 + 24 * Gcd(p-1, 3) + 11 * Gcd(p-1, 4) + 2 * Gcd(p-1, 5))); # Muniru A Asiru, Nov 16 2017
  • Maple
    a:= n-> `if`(n<3, [267, 504][n], (c-> 386 +(45 +3*c)*c+
        24*igcd(c, 3) +11*igcd(c, 4) +2*igcd(c, 5))(ithprime(n)-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Nov 17 2017
  • Mathematica
    Table[FiniteGroupCount[Prime[n]^6], {n, 40}] (* Michael De Vlieger, Apr 12 2016 *)
  • PARI
    a(n) = if(n==1, 267, if (n==2, 504, my(p=prime(n)); 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5))); \\ Altug Alkan, Apr 12 2016
    
  • Sage
    def A232106(n) : p = nth_prime(n); return 267 if p==2 else 504 if p==3 else 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5)
    

Formula

For a prime p > 3, the number of groups of order p^6 is 3p^2 + 39p + 344 + 24 gcd(p - 1, 3) + 11 gcd(p - 1, 4) + 2 gcd(p - 1, 5).

A258603 a(n) is the index m such that A069493(m) = prime(n)^6.

Original entry on oeis.org

2, 6, 13, 22, 45, 58, 87, 102, 135, 181, 199, 252, 287, 306, 342, 401, 461, 479, 536, 583, 602, 665, 712, 776, 860, 911, 932, 975, 997, 1051, 1212, 1258, 1331, 1356, 1479, 1502, 1580, 1651, 1705, 1784, 1856, 1879, 2013, 2037, 2093, 2113, 2272, 2438, 2484, 2510
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069493(a(n)) = A030516(n) = prime(n)^6;
A069493(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258571(m) = prime(n):
A258571(a(n)) = A000040(n) and A258571(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069493(a(n)) = A030516(n) = p^6
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            64
.   2 |  3 |     6 |           729
.   3 |  5 |    13 |         15625
.   4 |  7 |    22 |        117649
.   5 | 11 |    45 |       1771561
.   6 | 13 |    58 |       4826809
.   7 | 17 |    87 |      24137569
.   8 | 19 |   102 |      47045881
.   9 | 23 |   135 |     148035889
.  10 | 29 |   181 |     594823321
.  11 | 31 |   199 |     887503681
.  12 | 37 |   252 |    2565726409
.  13 | 41 |   287 |    4750104241
.  14 | 43 |   306 |    6321363049
.  15 | 47 |   342 |   10779215329
.  16 | 53 |   401 |   22164361129
.  17 | 59 |   461 |   42180533641
.  18 | 61 |   479 |   51520374361
.  19 | 67 |   536 |   90458382169
.  20 | 71 |   583 |  128100283921
.  21 | 73 |   602 |  151334226289
.  22 | 79 |   665 |  243087455521
.  23 | 83 |   712 |  326940373369
.  24 | 89 |   776 |  496981290961
.  25 | 97 |   860 |  832972004929  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258603 = (+ 1) . fromJust . (`elemIndex` a258571_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^6,6) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258603(n):
        c, m = 0, prime(n)**6
        for y1 in range(1,integer_nthroot(m,11)[0]+1):
            if all(d<=1 for d in factorint(y1).values()):
                for y2 in range(1,integer_nthroot(z2:=m//y1**11,10)[0]+1):
                    if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                        for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                            if all(gcd(y3,x)==1 for x in (y1,y2)) and all(d<=1 for d in factorint(y3).values()):
                                for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                    if all(gcd(y4,x)==1 for x in (y1,y2,y3)) and all(d<=1 for d in factorint(y4).values()):
                                        for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                            if all(gcd(y5,x)==1 for x in (y1,y2,y3,y4)) and all(d<=1 for d in factorint(y5).values()):
                                                c += integer_nthroot(z5//y5**7,6)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A261700 Numbers with 101 divisors.

Original entry on oeis.org

1267650600228229401496703205376, 515377520732011331036461129765621272702107522001, 7888609052210118054117285652827862296732064351090230047702789306640625, 3234476509624757991344647769100216810857203198904625400933895331391691459636928060001
Offset: 1

Views

Author

Omar E. Pol, Aug 28 2015

Keywords

Comments

Also, 100th powers of primes.
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Examples

			a(1) = 2^100, a(2) = 3^100, a(3) = 5^100, a(4) = 7^100.
		

Crossrefs

Programs

Formula

a(n) = A000040(n)^(101-1) = A000040(n)^100.
A000005(a(n)) = 101.
Previous Showing 21-30 of 82 results. Next