cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A031309 a(n)=least k such that base 10 representation of n begins at s(k), where s=A031298.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 29, 11, 1, 15, 17, 19, 21, 23, 25, 27, 49, 14, 33, 2, 37, 39, 41, 43, 45, 47, 69, 16, 36, 55, 3, 59, 61, 63, 65, 67, 89, 18, 38, 58, 77, 4, 81, 83, 85, 87, 109, 20, 40, 60, 80, 99, 5, 103, 105, 107, 129, 22, 42, 62, 82
Offset: 1

Views

Author

Keywords

A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Do not confuse with the digital root of n, A010888 (first term that differs is a(19)).
Also the fixed point of the morphism 0 -> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 1 -> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2 -> {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, etc. - Robert G. Wilson v, Jul 27 2006
For n < 100 equal to (floor(n/10) + n mod 10) = A076314(n). - Hieronymus Fischer, Jun 17 2007
It appears that a(n) is the position of 10*n in the ordered set of numbers obtained by inserting/placing one digit anywhere in the digits of n (except a zero before 1st digit). For instance, for n=2, the resulting set is (12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92) where 20 is at position 2, so a(2) = 2. - Michel Marcus, Aug 01 2022
Also the total number of beads required to represent n on a Russian abacus (schoty). - P. Christopher Staecker, Mar 31 2023
a(n) / a(2n) <= 5 with equality iff n is in A169964, while a(n) / a(3n) is unbounded, since if n = (10^k + 2)/3, then a(n) = 3*k+1, a(3n) = 3, so a(n) / a(3n) = k + 1/3 -> oo when k->oo (see Diophante link). - Bernard Schott, Apr 29 2023
Also the number of symbols needed to write number n in Egyptian numerals for n < 10^7. - Wojciech Graj, Jul 10 2025

Examples

			a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29.
		

Crossrefs

Programs

  • Haskell
    a007953 n | n < 10 = n
              | otherwise = a007953 n' + r where (n',r) = divMod n 10
    -- Reinhard Zumkeller, Nov 04 2011, Mar 19 2011
    
  • Magma
    [ &+Intseq(n): n in [0..87] ];  // Bruno Berselli, May 26 2011
    
  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Mar 17 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *)
    Nest[Flatten[# /. a_Integer -> Array[a + # &, 10, 0]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
    Total/@IntegerDigits[Range[0,90]] (* Harvey P. Dale, May 10 2016 *)
    DigitSum[Range[0, 100]] (* Requires v. 14 *) (* Paolo Xausa, May 17 2024 *)
  • PARI
    a(n)=if(n<1, 0, if(n%10, a(n-1)+1, a(n/10))) \\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n>9, n=divrem(n, 10); n[2]+a(n[1]), n)
    
  • PARI
    a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]>=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\ M. F. Hasler, Mar 22 2011
    
  • PARI
    a(n)=sum(i=1, #n=digits(n), n[i]) \\ Twice as fast. Not so nice but faster:
    
  • PARI
    a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\ M. F. Hasler, May 10 2015
    /* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by M. F. Hasler, Nov 09 2018] */
    
  • PARI
    a(n) = sumdigits(n); \\ Altug Alkan, Apr 19 2018
    
  • Python
    def A007953(n):
        return sum(int(d) for d in str(n)) # Chai Wah Wu, Sep 03 2014
    
  • Python
    def a(n): return sum(map(int, str(n))) # Michael S. Branicky, May 22 2021
    
  • Scala
    (0 to 99).map(.toString.map(.toInt - 48).sum) // Alonso del Arte, Sep 15 2019
    
  • Smalltalk
    "Recursive version for general bases. Set base = 10 for this sequence."
    digitalSum: base
    | s |
    base = 1 ifTrue: [^self].
    (s := self // base) > 0
      ifTrue: [^(s digitalSum: base) + self - (s * base)]
      ifFalse: [^self]
    "by Hieronymus Fischer, Mar 24 2014"
    
  • Swift
    A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // Egor Khmara, Jun 15 2021

Formula

a(A051885(n)) = n.
a(n) <= 9(log_10(n)+1). - Stefan Steinerberger, Mar 24 2006
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(10n+i) = a(n) + i for 0 <= i <= 9.
a(n) = n - 9*(Sum_{k > 0} floor(n/10^k)) = n - 9*A054899(n). (End)
From Hieronymus Fischer, Jun 17 2007: (Start)
G.f. g(x) = Sum_{k > 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).
a(n) = n - 9*Sum_{10 <= k <= n} Sum_{j|k, j >= 10} floor(log_10(j)) - floor(log_10(j-1)). (End)
From Hieronymus Fischer, Jun 25 2007: (Start)
The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k >= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k > 1 is a power of 10, else b(k) = 0.
G.f.: g(x) = (Sum_{k > 0} (1 - 9*c(k))*x^k)/(1-x), where c(k) = Sum_{j > 1, j|k} floor(log_10(j)) - floor(log_10(j-1)).
a(n) = n - 9*Sum_{0 < k <= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)
From Hieronymus Fischer, Oct 06 2007: (Start)
a(n) <= 9*(1 + floor(log_10(n))), equality holds for n = 10^m - 1, m > 0.
lim sup (a(n) - 9*log_10(n)) = 0 for n -> oo.
lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n -> oo. (End)
a(n) = A138530(n, 10) for n > 9. - Reinhard Zumkeller, Mar 26 2008
a(A058369(n)) = A004159(A058369(n)); a(A000290(n)) = A004159(n). - Reinhard Zumkeller, Apr 25 2009
a(n) mod 2 = A179081(n). - Reinhard Zumkeller, Jun 28 2010
a(n) <= 9*log_10(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = a(n-1) + a(n-10) - a(n-11), for n < 100. - Alexander R. Povolotsky, Oct 09 2011
a(n) = Sum_{k >= 0} A031298(n, k). - Philippe Deléham, Oct 21 2011
a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k >= 0. - Hieronymus Fischer, Mar 24 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 10*log(10)/9 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

Extensions

More terms from Hieronymus Fischer, Jun 17 2007
Edited by Michel Marcus, Nov 11 2013

A030308 Triangle T(n, k): Write n in base 2, reverse order of digits, to get the n-th row.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1
Offset: 0

Views

Author

Keywords

Comments

This is the quite common, so-called "bittest" function, see PARI code. - M. F. Hasler, Jul 21 2013
For a given number m and a digit position k the corresponding sequence index n can be calculated by n(m, k) = m*(1 + floor(log_2(m))) - 2^(1 + floor(log_2(m))) + k + 1. For example: counted from right to left, the second digit of m = 13 (binary 1101) is '0'. Hence the sequence index is n = n(13, 2) = 39. - Hieronymus Fischer, May 05 2007
A070939(n) is the length of n-th row; A000120(n) is the sum of n-th row; A030101(n) is the n-th row seen as binary number; A000035(n) = T(n, 0). - Reinhard Zumkeller, Jun 17 2012

Examples

			Triangle begins :
0
1
0, 1
1, 1
0, 0, 1
1, 0, 1
0, 1, 1
1, 1, 1
0, 0, 0, 1
1, 0, 0, 1 - _Philippe Deléham_, Oct 12 2011
		

Crossrefs

Cf. A030190.
Cf. A030341, A030386, A031235, A030567, A031007, A031045, A031087, A031298 for the base-3 to base-10 analogs.

Programs

  • Haskell
    a030308 n k = a030308_tabf !! n !! k
    a030308_row n = a030308_tabf !! n
    a030308_tabf = iterate bSucc [0] where
       bSucc []       = [1]
       bSucc (0 : bs) = 1 : bs
       bSucc (1 : bs) = 0 : bSucc bs
    -- Reinhard Zumkeller, Jun 17 2012
    
  • Maple
    A030308_row := n -> op(convert(n,base, 2)):
    seq(A030308_row(n), n=0..23); # Peter Luschny, Nov 28 2017
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n, 2]], {n, 0, 23}]] (* T. D. Noe, Oct 12 2011 *)
  • PARI
    A030308(n,k)=bittest(n,k) \\ Assuming that columns are numbered starting with k=0, as suggested by the formula from R. Zumkeller. - M. F. Hasler, Jul 21 2013
    
  • Python
    for n in range(20): print([int(z) for z in str(bin(n)[2:])[::-1]]) # Indranil Ghosh, Mar 31 2017
    
  • Sage
    A030308_row = lambda n: n.bits() if n > 0 else [0]
    for n in (0..23): print(A030308_row(n)) # Peter Luschny, Nov 28 2017
    
  • Scala
    (0 to 31).map(Integer.toString(, 2).reverse).mkString.split("").map(Integer.parseInt()).toList // Alonso del Arte, Feb 10 2020

Formula

a(n) = floor(m/2^(k - 1)) mod 2, where m = max(j|A001855(j) < n) and k = n - A001855(m). - Hieronymus Fischer, May 05 2007, Sep 10 2007
T(n, k) = (n // 2^k) mod 2, for 0 <= k <= log[2](n) and n > 0; T(0, 0) = 0. ('//' denotes integer division). - Peter Luschny, Apr 20 2023

Extensions

Initial 0 and better name by Philippe Deléham, Oct 12 2011

A030341 Triangle T(n,k): write n in base 3, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 0, 1, 1, 1, 2, 1, 0, 2, 1, 2, 2, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 0, 2, 2, 1, 2, 2, 2, 2, 2, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins :
0
1
2
0, 1
1, 1
2, 1
0, 2
1, 2
2, 2
0, 0, 1
1, 0, 1
2, 0, 1
0, 1, 1
1, 1, 1
2, 1, 1 ...
		

Crossrefs

Cf. A081604 (row lengths), A053735 (row sums), A007089, A003137.
Cf. A030308, A030386, A031235, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Haskell
    a030341 n k = a030341_tabf !! n !! k
    a030341_row n = a030341_tabf !! n
    a030341_tabf = iterate succ [0] where
       succ []     = [1]
       succ (2:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Maple
    A030341_row := n -> op(convert(n, base, 3)):
    seq(A030341_row(n), n=0..32); # Peter Luschny, Nov 28 2017
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,3]],{n,0,40}]] (* Harvey P. Dale, Oct 20 2014 *)
  • PARI
    A030341(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\3^k%3 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030567 and others. - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A133500 The powertrain or power train map: Powertrain(n): if abcd... is the decimal expansion of a number n, then the powertrain of n is the number n' = a^b*c^d* ..., which ends in an exponent or a base according as the number of digits is even or odd. a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 1, 6, 36, 216, 1296
Offset: 0

Views

Author

J. H. Conway, Dec 03 2007

Keywords

Comments

We take 0^0 = 1.
The fixed points are in A135385.
For 1-digit or 2-digit numbers this is the same as A075877. - R. J. Mathar, Mar 28 2012
a(A221221(n)) = A133048(A221221(n)) = A222493(n). - Reinhard Zumkeller, May 27 2013

Examples

			20 -> 2^0 = 1,
21 -> 2^1 = 2,
24 -> 2^4 = 16,
39 -> 3^9 = 19683,
623 -> 6^2*3 = 108,
etc.
		

Crossrefs

Cf. A075877, A133501 (number of steps to reach fixed point), A133502, A135385 (the conjectured list of fixed points), A135384 (numbers which converge to 2592). For records see A133504, A133505; for the fixed points that are reached when this map is iterated starting at n, see A287877.
Cf. also A133048 (powerback), A031346 and A003001 (persistence).
Cf. also A031298, A007376.

Programs

  • Haskell
    a133500 = train . reverse . a031298_row where
       train []       = 1
       train [x]      = x
       train (u:v:ws) = u ^ v * (train ws)
    -- Reinhard Zumkeller, May 27 2013
    
  • Maple
    powertrain:=proc(n) local a,i,n1,n2,t1,t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1[1]; fi; RETURN(n2*a); end; # N. J. A. Sloane, Dec 03 2007
  • Mathematica
    ptm[n_]:=Module[{idn=IntegerDigits[n]},If[EvenQ[Length[idn]],Times@@( #[[1]]^ #[[2]] &/@Partition[idn,2]),(Times@@(#[[1]]^#[[2]] &/@ Partition[ Most[idn],2]))Last[idn]]]; Array[ptm,70,0] (* Harvey P. Dale, Jul 15 2019 *)
  • Python
    def A133500(n):
        s = str(n)
        l = len(s)
        m = int(s[-1]) if l % 2 else 1
        for i in range(0,l-1,2):
            m *= int(s[i])**int(s[i+1])
        return m # Chai Wah Wu, Jun 16 2017

A030567 Triangle T(n,k): Write n in base 6 and reverse order of digits to get row n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 0, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Keywords

Comments

If columns are numbered starting with k=0, then T(n,k) contains the coefficient of 6^k in n's base-6 expansion. - M. F. Hasler, Jul 21 2013

Crossrefs

See A030548 for a quite complete list of crossreferences.
Cf. A030568 - A030573 for positions of a given digit.
Cf. A030575 - A030580 for run lengths, A030581 - A030585 for more.
Row sums (same as those of A030548) are in A053827.
Cf. A030308, A030341, A030386, A031235, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,6]],{n,0,50}]] (* Harvey P. Dale, Sep 27 2015 *)
  • PARI
    A030567(n,k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\6^k%6 \\ Assuming that columns start with k=0, cf. comment. TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name from Philippe Deléham, Oct 20 2011
Edited and crossrefs added by M. F. Hasler, Jul 21 2013

A031235 Triangle T(n,k): write n in base 5, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 4, 2, 1, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Cf. A007091.

Programs

  • Haskell
    a031235 n k = a031235_tabf !! n !! k
    a031235_row n = a031235_tabf !! n
    a031235_tabf = iterate succ [0] where
       succ []     = [1]
       succ (4:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Sep 18 2015
  • Mathematica
    Reverse[IntegerDigits[#,5]]&/@Range[0,40]//Flatten (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    A031235(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\5^k%5 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... - M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A030386 Triangle T(n,k): write n in base 4, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 1, 1, 2, 1, 3, 1, 0, 2, 1, 2, 2, 2, 3, 2, 0, 3, 1, 3, 2, 3, 3, 3, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 0, 3, 1, 1, 3, 1, 2, 3, 1, 3, 3, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 3, 0, 2, 0, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
0
1
2
3
0, 1
1, 1
2, 1
3, 1
0, 2
1, 2
2, 2
3, 2
0, 3
1, 3
2, 3
3, 3
0, 0, 1
1, 0, 1 ... - _Philippe Deléham_, Oct 20 2011
		

Crossrefs

Cf. A030308, A030341, A031235, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Cf. A007090.

Programs

  • Haskell
    a030386 n k = a030386_tabf !! n !! k
    a030386_row n = a030386_tabf !! n
    a030386_tabf = iterate succ [0] where
       succ []     = [1]
       succ (3:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A030386_row := n -> op(convert(n, base, 4)):
    seq(A030386_row(n), n=0..36); # Peter Luschny, Nov 28 2017
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,4]],{n,0,50}]] (* Harvey P. Dale, Oct 13 2012 *)
  • PARI
    A030386(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\4^k%4 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... \\ M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A031087 Triangle T(n,k): write n in base 9, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031298 for the base-2 to base-10 analogs.

Programs

  • Haskell
    a031087 n k = a031087_row n !! (k-1)
    a031087_row n | n < 9     = [n]
                  | otherwise = m : a031087_row n' where (n',m) = divMod n 9
    a031087_tabf = map a031087_row [0..]
    -- Reinhard Zumkeller, Jul 07 2015
  • PARI
    A031087(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\9^k%9 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030567 and others. - M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A031045 Triangle T(n,k): write n in base 8, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7, 5, 0, 6, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Maple
    seq(op(convert(n,base,8)),n=0..100); # Robert Israel, Jul 22 2019
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,8]],{n,80}]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    A031045(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.");*/n\8^k%8 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... Note: The operation could be done using bitwise arithmetic, bitand(n>>(3*k),7), but this is not significantly faster in PARI. - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011
Previous Showing 11-20 of 40 results. Next