cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A076976 Product of the smallest prime divisors of composite numbers between successive primes.

Original entry on oeis.org

1, 2, 2, 12, 2, 12, 2, 12, 120, 2, 120, 12, 2, 12, 168, 120, 2, 120, 12, 2, 168, 12, 120, 1680, 12, 2, 12, 2, 12, 2217600, 12, 168, 2, 15840, 2, 120, 168, 12, 312, 120, 2, 15840, 2, 12, 2, 221760, 262080, 12, 2, 12, 120, 2, 18720, 264, 168, 120, 2, 120, 12, 2, 34272
Offset: 1

Views

Author

Amarnath Murthy, Oct 23 2002

Keywords

Comments

From Bernard Schott, Apr 09 2020: (Start)
a(n) = 2 iff prime(n) is in A001359 (prime gap=2).
a(n) = 12 iff prime(n) is in A029710 (prime gap=4).
a(n) = 24 * p with p prime >= 5 iff prime(n) is in A031924 (prime gap=6).
a(n) = 2^m * q with q odd >= 3 iff prime(n+1) - prime(n) = 2*m where m = A007814(a(n)). (End)

Crossrefs

Cf. A029707 (a(n)=2), A029709 (a(n)=12), A076977.

Programs

  • Maple
    p:= 2:
    for i from 1 to 100 do
      q:= p; p:= nextprime(p);
      A[i]:= mul(min(numtheory:-factorset(i)),i=q+1..p-1);
    od:
    seq(A[i],i=1..100); # Robert Israel, Mar 30 2020
  • Mathematica
    pspd[{p1_,p2_}]:=Times@@(FactorInteger[#][[1,1]]&/@Range[p1+1,p2-1]); pspd/@Partition[ Prime[Range[70]],2,1] (* Harvey P. Dale, Jan 12 2024 *)
  • PARI
    a(n) = {my(p=1, pn=prime(n)); forcomposite(c=pn, nextprime(pn+1)-1, p *= vecmin(factor(c)[,1]);); p;} \\ Michel Marcus, Mar 31 2020

Extensions

More terms from Sascha Kurz, Jan 22 2003

A080841 Number of pairs (p,q) of (not necessarily consecutive) primes with q-p = 6 and q < 10^n.

Original entry on oeis.org

0, 15, 74, 411, 2447, 16386, 117207, 879908, 6849047, 54818296, 448725003, 3741217498
Offset: 1

Views

Author

Jason Earls, Mar 28 2003

Keywords

Comments

Note that one has to be careful to distinguish between pairs of consecutive primes (p,q) with q-p = 6 (A031924), and pairs of primes (p,q) with q-p = 6 (A023201). Here we consider the latter, whereas A093738 considers the former. - N. J. A. Sloane, Mar 07 2021

Crossrefs

Programs

  • PARI
    {c=0; p=7; for(n=1,9, while(p<10^n,if(isprime(p-6),c++); p=nextprime(p+1)); print1(c,","))}

Extensions

a(8) and a(9) from Klaus Brockhaus, Mar 30 2003
More terms from R. J. Mathar, Aug 05 2007

A204672 Primes followed by a gap of 120.

Original entry on oeis.org

1895359, 2898239, 6085441, 7160227, 7784039, 7803491, 7826899, 8367397, 8648557, 9452959, 10052071, 10863973, 11630503, 11962823, 12109697, 12230233, 12415681, 14411737, 14531899, 15014557, 15020737, 15611909, 16179041
Offset: 1

Views

Author

M. F. Hasler, Jan 18 2012

Keywords

Crossrefs

Cf. A058193 (first gap of 6n), A140791 (first gap of 10n).
Cf. A126771 (gap 60), A126724 (gap 150), A204673 (gap 180).

Programs

  • MATLAB
    N = 2*10^7; % to get all terms <= N
    P = primes(N+120);
    J = find(P(2:end) - P(1:end-1) == 120);
    P(J)  % Robert Israel, Feb 28 2017
  • Mathematica
    Transpose[Select[Partition[Prime[Range[1100000]],2,1],Last[#]-First[#] == 120&]] [[1]] (* Harvey P. Dale, Jul 11 2014 *)
  • PARI
    g=120;c=o=0;forprime(p=1,default(primelimit),(-o+o=p)==g&write("c:/temp/b204672.txt",c++" "p-g))
    

A287050 Square array read by antidiagonals upwards: M(n,k) is the initial occurrence of first prime p1 of consecutive primes p1, p2, where p2 - p1 = 2*k, and p1, p2 span a multiple of 10^n, n>=1, k>=1.

Original entry on oeis.org

29, 599, 7, 2999, 97, 47, 179999, 1999, 1097, 89, 23999999, 69997, 21997, 1193, 139, 23999999, 199999, 369997, 23993, 691, 199, 29999999, 19999999, 3199997, 149993, 10993, 199, 113, 17399999999, 19999999, 6999997, 1199999, 139999, 997, 293, 1831
Offset: 1

Views

Author

Hartmut F. W. Hoft, May 18 2017

Keywords

Comments

The unit digits of the numbers in the matrix representation M(n,k) are 9's for column 1, 7's or 9's for column 2, 7's for column 3, 3's or 9's for column 4, and 1's, 3's, 7's or 9's for column 5.
The following matrix terms appear as first terms in sequence
A060229(1) = M(1,1)
A288021(1) = M(1,2)
A288022(1) = M(1,3)
A288024(1) = M(1,4)
A031928(1) = M(1,5)
A158277(1) = M(2,1)
A160440(1) = M(2,2)
A160370(1) = M(2,3)
A287049(1) = M(2,4)
A160500(1) = M(2,5)
A158861(1) = M(3,1).

Examples

			The matrix representation of the sequence with row n indicating the spanned power of 10 and column k indicating the difference of 2*k between the first pair of consecutive primes spanning a multiple of 10^n:
--------------------------------------------------------------------------
n\k   1             2             3             4            5
--------------------------------------------------------------------------
1 |   29            7             47            89           139
2 |   599           97            1097          1193         691
3 |   2999          1999          21997         23993        10993
4 |   179999        69997         369997        149993       139999
5 |   23999999      199999        3199997       1199999      1999993
6 |   23999999      19999999      6999997       38999993     1999993
7 |   29999999      19999999      159999997     659999999    379999999
8 |   17399999999   7699999999    9399999997    8999999993   499999993
9 |   92999999999   135999999997  85999999997   8999999993   28999999999
10|   569999999999  519999999997  369999999997  29999999993  819999999997
...
Every column in the matrix is nondecreasing.
For the first and fourth columns, ceiling(M[n,1]/10^n) and ceiling(M[n,4]/10^n) are divisible by 3, for all n>=1 (see A158277 and A287049).
		

Crossrefs

Formula

M(n,k) = min( p_i : p_(i+1) - p_i = 2*k, p_i and p_(i+1) consecutive primes and p_i < m*10^n < p_(i+1) for some integer m) where p_j is the j-th prime, n>=1 and k>=1.

A078869 Number of n-tuples with elements in {2,4,6} which can occur as the differences between n+1 consecutive primes > n+1. (Values of a(11), ..., a(18) are conjectured to be correct, but are only known to be upper bounds.)

Original entry on oeis.org

3, 7, 15, 26, 38, 48, 67, 92, 105, 108, 109, 118, 130, 128, 112, 80, 36, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Dec 19 2002

Keywords

Comments

The ">n+1" rules out n-tuples like (2,2), which only occurs for the primes 3, 5, 7. All terms from a(19) on equal 0.
An n-tuple (a_1,a_2,...,a_n) is counted iff the partial sums 0, a_1, a_1+a_2, ..., a_1+...+a_n do not contain a complete residue system (mod p) for any prime p.

Crossrefs

The 26 4-tuples and 38 5-tuples are in A078868 and A078870. Cf. A001359, A008407, A029710, A031924, A022004-A022007, A078852, A078858, A078946-A078969, A020497.

Programs

  • Mathematica
    test[tuple_] := Module[{r, sums, i, j}, r=Length[tuple]; sums=Prepend[tuple.Table[If[j>=i, 1, 0], {i, 1, r}, {j, 1, r}], 0]; For[i=1, Prime[i]<=r+1, i++, If[Length[Union[Mod[sums, Prime[i]]]]==Prime[i], Return[False]]]; True]; tuples[0]={{}}; tuples[n_] := tuples[n]=Select[Flatten[Outer[Append, tuples[n-1], {2, 4, 6}, 1], 1], test]; a[n_] := Length[tuples[n]]

Extensions

Edited by Dean Hickerson, Dec 20 2002

A124590 Primes p such that q-p <= 6, where q is the next prime after p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 97, 101, 103, 107, 109, 127, 131, 137, 149, 151, 157, 163, 167, 173, 179, 191, 193, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 307, 311, 313, 331, 347, 349, 353, 367
Offset: 1

Views

Author

N. J. A. Sloane, Dec 19 2006

Keywords

Comments

Goldston, Graham, Pintz, & Yilidirm give a conditional proof that this sequence is infinite; see their Theorem 4. - Charles R Greathouse IV, Jul 31 2013

Crossrefs

Programs

  • PARI
    v=List([2]);p=3;forprime(q=5,1e3,if(q-p<=6,listput(v,p));p=q);Vec(v) \\ Charles R Greathouse IV, Jul 31 2013
    
  • PARI
    list(lim)=my(v=List(),p=2); forprime(q=3,nextprime(lim\1+1), if(q-p<7, listput(v,p)); p=q); Vec(v) \\ Charles R Greathouse IV, Jan 31 2017

Formula

A000040 MINUS A083371. - R. J. Mathar, Jun 15 2008
A124589 UNION A031924. - R. J. Mathar, Jan 23 2022
a(n) >> n log^2 n. - Charles R Greathouse IV, Jan 31 2017

A174350 Square array: row n >= 1 lists the primes p for which the next prime is p+2n; read by antidiagonals.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 17, 19, 31, 89, 29, 37, 47, 359, 139, 41, 43, 53, 389, 181, 199, 59, 67, 61, 401, 241, 211, 113, 71, 79, 73, 449, 283, 467, 293, 1831, 101, 97, 83, 479, 337, 509, 317, 1933, 523, 107, 103, 131, 491, 409, 619, 773, 2113, 1069, 887
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2010

Keywords

Comments

Every odd prime p = prime(i), i > 1, occurs in this array, in row (prime(i+1) - prime(i))/2. Polignac's conjecture states that each row contains an infinite number of indices. In case this does not hold, we can use the convention to continue finite rows with 0's, to ensure the sequence is well defined. - M. F. Hasler, Oct 19 2018
A permutation of the odd primes (A065091). - Robert G. Wilson v, Sep 13 2022

Examples

			Upper left hand corner of the array:
     3     5    11    17    29    41    59    71   101 ...
     7    13    19    37    43    67    79    97   103 ...
    23    31    47    53    61    73    83   131   151 ...
    89   359   389   401   449   479   491   683   701 ...
   139   181   241   283   337   409   421   547   577 ...
   199   211   467   509   619   661   797   997  1201 ...
   113   293   317   773   839   863   953  1409  1583 ...
  1831  1933  2113  2221  2251  2593  2803  3121  3373 ...
   523  1069  1259  1381  1759  1913  2161  2503  2861 ...
  (...)
Row 1: p(2) = 3, p(3) = 5, p(5) = 11, p(7) = 17,... these being the primes for which the next prime is 2 greater: (lesser of) twin primes A001359.
Row 2: p(4) = 7, p(6) = 13, p(8) = 19,... these being the primes for which the next prime is 4 greater: (lesser of) cousin primes A029710.
		

Crossrefs

Rows 35, 40, 45, 50, ...: A204792, A126722, A204764, A050434 (row 50), A204801, A204672, A204802, A204803, A126724 (row 75), A184984, A204805, A204673, A204806, A204807 (row 100); A224472 (row 150).
Column 1: A000230.
Column 2: A046789.

Programs

  • Mathematica
    rows = 10; t2 = {}; Do[t = {}; p = Prime[2]; While[Length[t] < rows - off + 1, nextP = NextPrime[p]; If[nextP - p == 2*off, AppendTo[t, p]]; p = nextP]; AppendTo[t2, t], {off, rows}]; Table[t2[[b, a - b + 1]], {a, rows}, {b, a}] (* T. D. Noe, Feb 11 2014 *)
    t[r_, 0] = 2; t[r_, c_] := Block[{p = NextPrime@ t[r, c - 1], q}, q = NextPrime@ p; While[ p + 2r != q, p = q; q = NextPrime@ q]; p]; Table[ t[r - c + 1, c], {r, 10}, {c, r, 1, -1}] (* Robert G. Wilson v, Nov 06 2020 *)
  • PARI
    A174350_row(g, N=50, i=0, p=prime(i+1), L=[])={g*=2; forprime(q=1+p, , i++; if(p+g==p=q, L=concat(L, q-g); N--||return(L)))} \\ Returns the first N terms of row g. - M. F. Hasler, Oct 19 2018

Formula

a(n) = A000040(A174349(n)). - Michel Marcus, Mar 30 2016

Extensions

Definition corrected and other edits by M. F. Hasler, Oct 19 2018

A210477 Product of adjacent primes with a gap of 6.

Original entry on oeis.org

667, 1147, 2491, 3127, 4087, 5767, 7387, 17947, 23707, 25591, 28891, 30967, 55687, 64507, 67591, 70747, 75067, 111547, 126727, 136891, 141367, 148987, 190087, 198907, 256027, 295927, 313591, 320347, 329467, 348091, 355207, 364807, 372091, 422491, 430327, 462391, 532891
Offset: 1

Views

Author

R. J. Mathar, Jan 23 2013

Keywords

Comments

Subsequence of A111192.
Sum_{n>=1} 1/a(n) > 0.00405067912.

Programs

Formula

a(n) = A031924(n)*(A031924(n)+6).

A224472 Primes followed by a gap of 300.

Original entry on oeis.org

4758958741, 5612345261, 6169169561, 6306815239, 6646984159, 7335508261, 8645089003, 8806019249, 9047808247, 9148138313, 9466071347, 9907846261, 10055451683, 11063821453, 11475026363, 11603081459, 12292390637, 12750876857, 13833827471, 14636472007, 15876700949
Offset: 1

Views

Author

Zak Seidov, Apr 07 2013

Keywords

Comments

The first twin gap equal to 300 occurs for p = 6537587646371. - Giovanni Resta, Apr 07 2013

Crossrefs

Cf. A058193 (first gap of 6n), A140791 (first gap of 10n), A126771 (gap 60), A126724 (gap 150), A204673 (gap 180), A204807 (gap 200), A000230, A001359, A204672, A029710, A031924-A031938, A061779, A098974, A124594-A124596, A126784, A134116-A134124, A204665-A204670.

A258578 Primes p such that difference between p and next prime after p is multiple of 6.

Original entry on oeis.org

23, 31, 47, 53, 61, 73, 83, 131, 151, 157, 167, 173, 199, 211, 233, 251, 257, 263, 271, 331, 353, 367, 373, 383, 433, 443, 467, 503, 509, 523, 541, 557, 563, 571, 587, 593, 601, 607, 619, 647, 653, 661, 677, 727, 733, 751, 797, 941, 947, 971, 977, 991, 997
Offset: 1

Views

Author

Zak Seidov, Jun 04 2015

Keywords

Comments

A031924 is subsequence: first 12 terms are the same.

Examples

			a(1)=23 because next prime after 23 is 29=23+6,
a(13)=199 because next prime after 199 is 211=199+12,
a(30)=523 because next prime after 523 is 541=523+18,
a(90)=1669 because next term after 1669 is 1693=1669+24,
a(199)=4297 because next prime after 4297 is 4327=4297+30.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime[Range[200]],2,1],Mod[#[[2]]-#[[1]],6]==0&][[All,1]] (* Harvey P. Dale, Jun 20 2019 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (!((nextprime(p+1) - p) % 6), print1(p, ", "));); \\ Michel Marcus, Jun 04 2015
    
  • PARI
    v=List();p=2; forprime(q=3,1e4,if((q-p)%6==0,listput(v,p));p=q); v \\ Charles R Greathouse IV, Jun 04 2015
Previous Showing 41-50 of 59 results. Next