cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 83 results. Next

A261490 The total element sum of the n-fold f transform applied to the length n sequence of 1's. And f returns a sorted result after multiplying the elements in its input sequence with 1, 2, 3,... in descending size order.

Original entry on oeis.org

0, 1, 4, 19, 100, 633, 4626, 37878, 348224, 3542952, 39339852, 478962252, 6289532928, 89038853856, 1346224983936, 21729308136720, 371924399416320, 6740200653419520, 128878557725067264, 2598800542616444724, 54986036469506668800, 1217069235297874269792
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Main diagonal of A166278.
Cf. A031971 (for ascending sort), A036740 (when sum is replaced by product).

Programs

  • Maple
    f:= l-> sort([seq(sort(l, `>`)[i]*i, i=1..nops(l))]):
    a:= n-> add(i, i=(f@@n)([1$n])):
    seq(a(n), n=0..35);

A344429 a(n) = Sum_{k=1..n} mu(k) * k^n.

Original entry on oeis.org

1, -3, -34, -96, -3399, 30239, -624046, -4482626, -32249230, 9768165230, -186975207617, -2150337557747, -327482869358214, 6894274639051756, 539094536846680025, 8044964790023844733, -707278869236116107432, -12275330572755863672628, -2190860499375418948848067
Offset: 1

Views

Author

Seiichi Manyama, May 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k] * k^n, {k,1,n}]; Array[a, 20] (* Amiram Eldar, May 19 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^n);
    
  • Python
    from functools import lru_cache
    from math import comb
    from sympy import bernoulli
    @lru_cache(maxsize=None)
    def faulhaber(n,p):
        """ Faulhaber's formula for calculating Sum_{k=1..n} k^p
            requires sympy version 1.12+ where bernoulli(1) = 1/2
        """
        return sum(comb(p+1,k)*bernoulli(k)*n**(p-k+1) for k in range(p+1))//(p+1)
    @lru_cache(maxsize=None)
    def A344429(n,m=None):
        if n <= 1:
            return 1
        if m is None:
            m=n
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (faulhaber(j-1,m)-faulhaber(j2-1,m))*A344429(k1,m)
            j, k1 = j2, n//j2
        return c+faulhaber(j-1,m)-faulhaber(n,m) # Chai Wah Wu, Nov 02 2023

A349836 Expansion of Sum_{k>=0} (k * x)^k/(1 - k^2 * x).

Original entry on oeis.org

1, 1, 5, 44, 564, 9665, 211025, 5686104, 184813048, 7118824417, 320295658577, 16626717667348, 985178854556524, 66005199079345025, 4958773228726876257, 414664315430994701616, 38344259607889223269168, 3898112616839310343827009
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[k^(2*n - k), {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Dec 04 2021 *)
  • PARI
    a(n, t=2) = sum(k=0, n, k^(t*(n-k)+k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k^2*x)))

Formula

a(n) = Sum_{k=0..n} k^(2*n-k).
a(n) ~ sqrt(Pi) * 2^(1 + 2*n - 2*n/LambertW(2*exp(1)*n)) * (n/LambertW(2*exp(1)*n))^(1/2 + 2*n - 2*n/LambertW(2*exp(1)*n)) / sqrt(1 + LambertW(2*exp(1)*n)). - Vaclav Kotesovec, Dec 04 2021

A349883 Expansion of Sum_{k>=0} (k * x)^k/(1 - k^3 * x).

Original entry on oeis.org

1, 1, 5, 60, 1242, 41241, 2033683, 141318208, 13262986788, 1624337451945, 252725477615989, 48858277079478156, 11523986801592238046, 3265676705193282018577, 1097336766468309067029991, 432291795385094609190468384, 197690320046319097006619353352
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 3*n - 2*k == 0, 1, k^(3*n - 2*k)], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    a(n, t=3) = sum(k=0, n, k^(t*(n-k)+k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k^3*x)))

Formula

a(n) = Sum_{k=0..n} k^(3*n-2*k).
a(n) ~ sqrt(Pi) * (3/2)^(1/2 + 3*n - 3*n/LambertW(3*exp(1)*n/2)) * (n/LambertW(3*exp(1)*n/2))^(1/2 + 3*n - 3*n/LambertW(3*exp(1)*n/2)) / sqrt(1 + LambertW(3*exp(1)*n/2)). - Vaclav Kotesovec, Dec 04 2021

A349963 a(n) = Sum_{k=0..n} (2*k)^n.

Original entry on oeis.org

1, 2, 20, 288, 5664, 141600, 4298944, 153638912, 6319260672, 294044152320, 15272286131200, 875880428003328, 54976337351106560, 3748609104907476992, 275924407293425336320, 21806398621389422592000, 1841661678145084557099008, 165530736067119754944577536
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n == 0, 1, (2*k)^n], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (2*k)^n);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (2*k*x)^k/(1-2*k*x)))

Formula

G.f.: Sum_{k>=0} (2*k * x)^k/(1 - 2*k * x).
a(n) = 2^n * A031971(n).
a(n) ~ c * 2^n * n^n, where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Dec 07 2021

A353013 a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(n-k).

Original entry on oeis.org

1, 1, 4, 28, 264, 3207, 47696, 839412, 17061280, 393264145, 10135913792, 288839201432, 9017184333440, 306045200463519, 11220008681600256, 441866073895351128, 18603606156815235584, 833860238440653331505, 39643749441387211150336
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(n - 2*k)^(n - k), {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^(n-k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k*x^2)))

Formula

G.f.: Sum_{k>=0} (k * x)^k / (1 - k * x^2).

A353014 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^(n-2*k).

Original entry on oeis.org

1, 1, 4, 27, 257, 3133, 46737, 824568, 16792857, 387700668, 10005768898, 285445966496, 8919588913002, 302975146962245, 11115146328067250, 438000914977377939, 18450682450377791691, 827395864513198608177, 39352977767853205024131
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(n - 3*k)^(n - 2*k), {k, 0, Floor[n/3]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^(n-2*k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k*x^3)))

Formula

G.f.: Sum_{k>=0} (k * x)^k / (1 - k * x^3).

A074209 a(n) = Sum_{i=n+1..2n} i^n.

Original entry on oeis.org

2, 25, 405, 8418, 216400, 6668779, 240361121, 9936764996, 463893277176, 24148657338925, 1387253043076813, 87185783860333910, 5951020164442347800, 438417132703015536399, 34673851743509883542625
Offset: 1

Views

Author

Zak Seidov, Sep 22 2002

Keywords

Comments

A rapidly growing sequence. An even more rapidly growing sequence, the sum of next n terms of the form i^i, is given in A074309. Sum of first n terms of the form i^n is A031971. Sum of first n terms of the form i^i is A001923.

Examples

			a(2) = 25 = 3^2 + 4^2, a(3) = 405 = 4^3 + 5^3 + 6^3, a(4) = 8418 = 5^4 + 6^4 + 7^4 + 8^4, a(5) = 216400 = 6^4 + 7^5 + 8^5 + 9^5 + 10^5.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[i^n, {i, n+1, 2n}], {n, 20}]
  • PARI
    a(n) = sum(k=n+1, 2*n, k^n); \\ Seiichi Manyama, Dec 05 2021

Formula

From Wesley Ivan Hurt, Jan 28 2021: (Start)
a(n) = Sum_{k=1..n} (n+k)^n.
a(n) = Zeta(-n,n+1) - Zeta(-n,2*n+1), where Zeta is the Hurwitz zeta function. (End)
a(n) ~ (2*n)^n / (1 - exp(-1/2)). - Vaclav Kotesovec, Dec 06 2021

Extensions

Name changed by Wesley Ivan Hurt, Jan 28 2021

A182398 a(n) = (Sum_{k=1..2n} k^2n) mod 2n.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 7, 8, 3, 6, 11, 4, 13, 14, 5, 16, 17, 6, 19, 12, 1, 22, 23, 8, 25, 26, 9, 28, 29, 58, 31, 32, 11, 34, 35, 12, 37, 38, 13, 24, 41, 2, 43, 44, 15, 46, 47, 16, 49, 30, 17, 52, 53, 18, 45, 56, 19, 58, 59, 116, 61, 62, 3, 64, 65, 22, 67, 68, 23
Offset: 1

Views

Author

Michel Lagneau, Apr 27 2012

Keywords

Comments

Sum_{k=1..n} k^n (mod n) = 0 if n odd.
Properties of this sequence:
a(n) = 1 for n = 1, 3, 21, 903, ...
a(n) = n if n not divisible by 3;
a(3*n) = n except for n = 7, 10, 14, 20, 21, 26, 28, 30, 35, ...
a(21*n) = n, except for n = 10, 20, 26, 30, 40, 43, 50, 52, ...
a(903*n) = n, except for n = 10, ....
It appears that a(A007018(n)/2) = 1 and conjecturally a(m*A007018(n)/2) = m for a majority of value m.
No, a(A007018(n)/2) <> 1 for n > 4. (For example, a(A007018(5)/2) = a(1631721) = 1807.) - Jonathan Sondow, Oct 18 2013
0 < a(n) < 10 for n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 21, 24, 27, 42, 63, 84, 105, 126, 147, 168, 189, 903, 1806, 2709, 3612, 4515, 5418, 6321, 7224, 8127, .... Search limit was 25000. - Robert G. Wilson v, Jun 18 2015

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do: s:=sum('k^(2*n)', 'k'=1..2*n)
    : x:=irem(s,2*n): printf(`%d, `,x):od:
    # second Maple program:
    a:= n-> add(k&^(2*n) mod (2*n), k=1..2*n) mod (2*n):
    seq(a(n), n=1..100);
  • Mathematica
    Table[Mod[Total[PowerMod[Range[2*n], 2*n, 2*n]], 2*n], {n, 100}] (* T. D. Noe, Apr 28 2012 *)

Formula

a(n) = A031971(2n) mod 2n. - Jonathan Sondow, Oct 18 2013

A215078 Triangle of sums of the first k n-th powers multiplied by binomial(n,k), read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 5, 0, 3, 27, 36, 0, 4, 102, 392, 354, 0, 5, 330, 2760, 6500, 4425, 0, 6, 975, 15880, 73350, 123090, 67171, 0, 7, 2709, 81060, 654500, 2033325, 2637327, 1200304, 0, 8, 7196, 381808, 5064780, 25926824, 59992660, 63259168, 24684612, 0, 9, 18468, 1696464, 35574840, 281668590, 1034305524, 1896003648, 1681960464, 574304985, 0, 10, 46125, 7208880, 232816500, 2740317300, 14981494710, 42457884000, 64240088580, 49143419250, 14914341925
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

If one starts the sum at j=0, the initial term T(0,0) is 1.

Examples

			  0
  0  1
  0  2    5
  0  3   27       36
  0  4  102      392      354
  0  5  330     2760     6500     4425
  0  6  975    15880    73350   123090    67171
  0  7 2709    81060   654500  2033325  2637327  1200304
		

Crossrefs

Binomial convolution of A215083.
Cf. A215077 (row sums), A031971 (diagonal)

Programs

  • Maple
    A215078 := proc(n,k)
            binomial(n,k)*add(j^n,j=1..k) ;
    end proc:
    seq(seq(A215078(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jan 27 2023
  • Mathematica
    Flatten[Table[Table[Sum[j^n, {j, 1, k}]*Binomial[n, k], {k, 0, n}], {n, 0, 10}], 1]

Formula

T(n,k) = binomial(n,k)*sum(j^n, j=1..k)
Previous Showing 41-50 of 83 results. Next