cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 83 results. Next

A249564 a(n) = Sum_{k = 0..n} (k*(k+1)/2)^n.

Original entry on oeis.org

1, 1, 10, 244, 11378, 867395, 98204132, 15475158552, 3239399341956, 869652788703285, 291315412833808702, 119114020598815073524, 58386684085633233147478, 33797341113242898165287495, 22810507257314647778044971848, 17755122836243141585656207243952
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[Sum[Exp[x*k*(k+1)/2], {k, 0, n}], {x, 0, n}], {n, 0, 20}]
    Flatten[{1,Table[Sum[(k*(k+1)/2)^n,{k,1,n}],{n,1,20}]}]
  • PARI
    a(n) = sum(k=0, n, (k*(k+1)/2)^n); \\ Michel Marcus, Aug 24 2023

Formula

E.g.f.: Sum_{n>=0} exp(x*n*(n+1)/2).
a(n) ~ exp(3) * n^(2*n) / ((exp(2)-1) * 2^n).

Extensions

New name from Peter Bala, Aug 18 2023

A276487 Denominator of Sum_{k=1..n} 1/k^n.

Original entry on oeis.org

1, 4, 216, 20736, 777600000, 46656000000, 768464444160000000, 247875891108249600000000, 4098310578334288576512000000000, 413109706296096288512409600000000, 7425496288284402957501110551810198732800000000000
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Comments

Also denominator of zeta(n) - Hurwitz zeta(n,n+1), where zeta(s) is the Riemann zeta function and Hurwitz zeta(s,a) is the Hurwitz zeta function.
Sum_{k>=1} 1/k^n = zeta(n).

Examples

			1, 5/4, 251/216, 22369/20736, 806108207/777600000, 47464376609/46656000000, 774879868932307123/768464444160000000, ...
a(3) = 216, because 1/1^3 + 1/2^3 + 1/3^3 = 251/216.
		

Crossrefs

Cf. A001008, A002805, A007406, A007407, A031971, A276485 (numerators).

Programs

  • Maple
    A276487:=n->denom(add(1/k^n, k=1..n)): seq(A276487(n), n=1..12); # Wesley Ivan Hurt, Sep 07 2016
  • Mathematica
    Table[Denominator[HarmonicNumber[n, n]], {n, 1, 11}]
  • PARI
    a(n) = denominator(sum(k=1, n, 1/k^n)); \\ Michel Marcus, Sep 06 2016

A308481 a(n) = Sum_{k=1..n, gcd(n,k) = 1} k^n.

Original entry on oeis.org

1, 1, 9, 82, 1300, 15626, 376761, 6161988, 176787117, 3769318700, 142364319625, 3152513804548, 154718778284148, 4340009120036086, 210971169748692000, 7281661100510001416, 435659030617933827136, 14181101408561469791694, 1052864393300587929716721, 41673894815421072916530408
Offset: 1

Views

Author

Ilya Gutkovskiy, May 30 2019

Keywords

Crossrefs

First superdiagonal of A308477.
Cf. A031971.

Programs

  • Mathematica
    a[n_] := Sum[If[GCD[n, k] == 1, k^n, 0], {k, 1, n}]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = sum(k=1, n, (gcd(n,k)==1)*k^n) \\ Felix Fröhlich, May 30 2019

A332655 a(n) = Sum_{k=1..n} (k/gcd(n, k))^n.

Original entry on oeis.org

1, 2, 10, 84, 1301, 15693, 376762, 6168552, 176787631, 3770427352, 142364319626, 3152758480715, 154718778284149, 4340093860950619, 210971170836848270, 7281694486114555088, 435659030617933827137, 14181121059071691716406, 1052864393300587929716722, 41673907052879908244100770
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k div Gcd(n,k))^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[(k/GCD[n, k])^n, {k, 1, n}], {n, 1, 20}]
    Table[Sum[Sum[If[GCD[k, d] == 1, k^n, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]

Formula

a(n) = Sum_{k=1..n} (lcm(n, k)/n)^n.
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} k^n.

A345100 a(n) = Sum_{k=1..n} k^floor(n/k).

Original entry on oeis.org

1, 3, 6, 12, 17, 33, 40, 68, 95, 141, 152, 328, 341, 461, 738, 1130, 1147, 2159, 2178, 4068, 5841, 6997, 7020, 18198, 20723, 25001, 38798, 61546, 61575, 137445, 137476, 223252, 342593, 408435, 485376, 1213988, 1214025, 1476549, 2541498, 4202810, 4202851, 8777205
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k^Floor[n/k], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jun 08 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^(n\k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k*(1-x^k)/(1-k*x^k))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} k*x^k * (1 - x^k)/(1 - k*x^k).
a(n) ~ 3^((n - mod(n,3))/3). - Vaclav Kotesovec, Jun 11 2021

A359659 a(n) = Sum_{k=0..n} k^(k * (n-k+1)).

Original entry on oeis.org

1, 2, 6, 45, 1051, 88602, 27121964, 37004504305, 198705527223757, 5595513387083114570, 686714367475480207331582, 468422339816915120237104999421, 1664212116512828935888786624225704855
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k^(k*(n-k+1)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k^k*x)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k+1)^(k+1)*x)))

Formula

G.f.: Sum_{k>=0} (k * x)^k/(1 - k^k * x).
G.f.: Sum_{k>=0} x^k/(1 - (k+1)^(k+1) * x).
a(n) = A349893(n+1) - 1.

A074309 Sum of next n terms of the form i^i.

Original entry on oeis.org

4, 283, 50037, 17650540, 10405067904, 9211817140115, 11424093748466841, 18896062057822100616, 40192544399240309019728, 106876212200059543898143707, 347377340594805599176614321101
Offset: 1

Views

Author

Zak Seidov, Sep 22 2002

Keywords

Comments

Sum of next n terms of the form i^n is A074209. Sum of first n terms of the form i^n is A031971. Sum of first n terms of the form i^i is A001923.

Examples

			a(2) = 283 = 3^3 + 4^4, a(3) = 50037 = 4^4 + 5^5 + 6^6, a(4) = 17650540 = 5^5 + 6^6 + 7^7 + 8^8, a(5) = 10405067904 = 6^6 + 7^7 + 8^8 + 9^9 + 10^10.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[i^i, {i, n+1, 2n}], {n, 20}]
  • PARI
    a(n) = sum(k=n+1, 2*n, k^k); \\ Seiichi Manyama, Dec 05 2021

Formula

a(n) = Sum_{i=n+1..2n} i^i.
a(n) ~ (2*n)^(2*n). - Vaclav Kotesovec, Dec 06 2021

A220779 Exponent of highest power of 2 dividing the sum 1^n + 2^n + ... + n^n.

Original entry on oeis.org

0, 0, 2, 1, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 6, 3, 0, 0, 2, 1, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 8, 4, 0, 0, 2, 1, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 6, 3, 0, 0, 2, 1, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 10, 5, 0, 0, 2, 1, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 6, 3, 0, 0, 2, 1, 0, 0, 4
Offset: 1

Views

Author

Jonathan Sondow, Dec 20 2012

Keywords

Comments

2-adic valuation of Sum_{k = 1..n} k^n.
Omitting the zero terms (for n == 1 or 2 mod 4) gives A220780.

Examples

			1^3 + 2^3 + 3^3 = 1 + 8 + 27 = 36 = 2^2 * 9, so a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[ IntegerExponent[ Sum[ k^n, {k, 1, n}], 2], {n, 150}]
  • PARI
    a(n) = valuation(sum(k=1, n, k^n), 2); \\ Michel Marcus, Jul 09 2022
  • Python
    from sympy import harmonic
    def A220779(n): return (~(m:=int(harmonic(n,-n)))&m-1).bit_length() # Chai Wah Wu, Jul 08 2022
    

Formula

a(n) = d - 1 or 2*(d - 1), according as n or n+1 = 2^d * odd, with d > 0.
a(n) = A007814(A031971(n)).

A220780 Nonzero terms of A220779: exponent of highest power of 2 dividing an even sum 1^n + 2^n + ... + n^n.

Original entry on oeis.org

2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 8, 4, 2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 10, 5, 2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 8, 4, 2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 12, 6, 2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 8, 4, 2, 1, 4, 2, 2, 1
Offset: 1

Views

Author

Jonathan Sondow, Dec 20 2012

Keywords

Comments

2-adic valuation of Sum_{k=1..n} k^n for n == 0 or 3 mod 4.
See references, links, formulas, and example in A220779.

Crossrefs

Programs

  • Mathematica
    Table[n = 2*k + Mod[k, 2]; IntegerExponent[ Sum[a^n, {a, 1, n}], 2], {k, 150}]
  • Python
    from sympy import harmonic
    def A220780(n): return (~(m:=int(harmonic(k:=(n<<1)+(n&1),-k)))&m-1).bit_length() # Chai Wah Wu, Jul 11 2022

A225578 Sum of first (prime(n) - 1) (prime(n) - 1)th powers.

Original entry on oeis.org

1, 5, 354, 67171, 14914341925, 13421957361110, 28101527071305611528, 60182438244917445266889, 525344775209112229247070397995, 51296981152155330485450049059398345004638, 319099356359853147544285512855368258519442575
Offset: 1

Views

Author

Alonso del Arte, May 10 2013

Keywords

Comments

It follows from Fermat's little theorem that a(n) is congruent to -1 mod the n-th prime.

Examples

			a(2) = 5 because, since 3 is the second prime, we have 1^2 + 2^2 = 1 + 4 = 5.
a(3) = 354 because, since 5 is the third prime, we have 1^4 + 2^4 + 3^4 + 4^4 = 1 + 4 + 81 + 256 = 354.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section A17.
  • Paulo Ribemboim, The Little Book of Big Primes, New York, Springer-Verlag (1991): 17.

Crossrefs

Programs

  • Mathematica
    Table[Sum[i^(Prime[n] - 1), {i, Prime[n] - 1}], {n, 15}]

Formula

a(n) = Sum_{i=1..prime(n)-1} i^(prime(n) - 1).
Previous Showing 51-60 of 83 results. Next