cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A187784 Triangular array read by rows: T(n,k) is the number of ordered set partitions of {1,2,...,n} with exactly k singletons, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 6, 0, 6, 7, 8, 36, 0, 24, 21, 100, 60, 240, 0, 120, 141, 372, 1170, 480, 1800, 0, 720, 743, 3584, 5166, 13440, 4200, 15120, 0, 5040, 5699, 22864, 67368, 68544, 159600, 40320, 141120, 0, 40320, 42241, 225684, 502200, 1161216, 922320, 1995840, 423360, 1451520, 0, 362880
Offset: 0

Views

Author

Geoffrey Critzer, Jan 05 2013

Keywords

Comments

A singleton is a set that contains exactly one element.
Column for k=0 is A032032.
Row sums are A000670.
Main diagonal is A000142.

Examples

			:    1;
:    0,     1;
:    1,     0,     2;
:    1,     6,     0,     6;
:    7,     8,    36,     0,     24;
:   21,   100,    60,   240,      0,   120;
:  141,   372,  1170,   480,   1800,     0,    720;
:  743,  3584,  5166, 13440,   4200, 15120,      0, 5040;
: 5699, 22864, 67368, 68544, 159600, 40320, 141120,    0, 40320;
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, p) option remember; `if`(n=0, p!,
          `if`(i<2, 0, add(multinomial(n, n-i*j, i$j)
          *b(n-i*j, i-1, p+j)/j!, j=0..n/i)))
        end:
    T:= (n, k)-> binomial(n, k)*b(n-k$2, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Sep 06 2015
  • Mathematica
    nn=8;Range[0,nn]!CoefficientList[Series[1/(2-Exp[x]+x-y x),{x,0,nn}],{x,y}]//Grid

Formula

E.g.f.: 1/(2 - exp(x) + x - y*x).

A332258 E.g.f.: 1 / (1 + x - sinh(x)).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 20, 1, 112, 1681, 492, 27721, 371624, 319177, 13461604, 171387217, 319071456, 11466038689, 143550642140, 484491620089, 15758152572952, 199089883272217, 1077471975974484, 32827750137627457, 427744154995090256, 3385134777669637681
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2020

Keywords

Comments

Number of labeled ordered partitions of an n-set into odd parts > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/(1 + x - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 2 k - 1] a[n - 2 k + 1], {k, 2, Ceiling[n/2]}]; Table[a[n], {n, 0, 25}]
  • PARI
    seq(n)={Vec(serlaplace(1 / (1 + x - sinh(x + O(x*x^n)))))} \\ Andrew Howroyd, Feb 08 2020

Formula

a(0) = 1; a(n) = Sum_{k=2..ceiling(n/2)} binomial(n,2*k-1) * a(n-2*k+1).
a(n) ~ n! / ((cosh(r) - 1) * r^(n+1)), where r = 1.72911689821437486498840709347... is the root of the equation 1 + r - sinh(r) = 0. - Vaclav Kotesovec, Feb 08 2020

A367838 Expansion of e.g.f. 1/(2 + x - exp(2*x)).

Original entry on oeis.org

1, 1, 6, 38, 344, 3832, 51408, 803952, 14371456, 289005440, 6457624832, 158719896832, 4255775425536, 123619815742464, 3867071262472192, 129610289219999744, 4633674344869756928, 176011269522607144960, 7079115958438736363520
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-i*v[i]+sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = -n * a(n-1) + Sum_{k=1..n} 2^k * binomial(n,k) * a(n-k).

A367840 Expansion of e.g.f. 1/(2 + x - exp(4*x)).

Original entry on oeis.org

1, 3, 34, 514, 10456, 265704, 8103120, 288302480, 11722944896, 536262671488, 27256865214208, 1523936708699904, 92949383868668928, 6141694449341637632, 437033351625771001856, 33319937543640487708672, 2709708041047388536274944
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-i*v[i]+sum(j=1, i, 4^j*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = -n * a(n-1) + Sum_{k=1..n} 4^k * binomial(n,k) * a(n-k).

A245854 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 1.

Original entry on oeis.org

1, 2, 12, 68, 520, 4542, 46550, 540136, 7045020, 101865410, 1619046418, 28053492348, 526430246264, 10636085523910, 230214619661790, 5314695463338704, 130356558777712468, 3385311352838750538, 92797887464933030762, 2677623216872061223780, 81123642038690958720048
Offset: 1

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=1 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 1) -b(n, 2):
    seq(a(n), n=1..25);
  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(2-Exp[x])-1/(2-Exp[x]+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 29 2024 *)

Formula

E.g.f.: 1/(2-exp(x))-1/(2-exp(x)+x).
a(n) = A000670(n) - A032032(n) = A245732(n,1) - A245732(n,2).

A245855 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 2.

Original entry on oeis.org

1, 0, 6, 20, 120, 672, 5516, 40140, 368640, 3521870, 37445298, 422339502, 5215454426, 68144100780, 954428684280, 14160968076584, 222769496190060, 3692874342747114, 64493471050666430, 1181830474135532130, 22692074431844298558, 455404848204906308984
Offset: 2

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=2 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 2) -b(n, 3):
    seq(a(n), n=2..25);

Formula

E.g.f.: 1/(2-exp(x)+x) -1/(2-exp(x)+x+x^2/2).
a(n) = A032032(n) - A102233(n) = A245732(n,2) - A245732(n,3).

A306416 Number of ordered set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 26, 84, 950, 6000, 62522, 556116, 6259598, 69319848, 874356338, 11384093196, 161462123894, 2397736692144, 37994808171962, 631767062124564, 11088109048500158, 203828700127054008, 3928762035148317314, 79079452776283889820, 1661265965479375937030, 36332908076071038467520, 826376466514358722894154
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2019

Keywords

Examples

			The a(4) = 2 ordered set partitions are: {{1,3},{2,4}}, {{2,4},{1,3}}.
		

Crossrefs

Cf. A000110, A000126, A000296, A000670, A001610, A032032 (adjacencies allowed), A052841 (singletons allowed), A124323, A169985, A306417, A324011 (orderless case), A324012, A324015.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Length[stn]!,{stn,Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]}],{n,0,10}]

Extensions

a(12)-a(26) from Alois P. Heinz, Feb 14 2019

A365908 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+2) / (3*k+2)! ).

Original entry on oeis.org

1, 0, 1, 0, 6, 1, 90, 42, 2521, 2268, 113742, 166321, 7543206, 16218930, 691242553, 2044833336, 83708046246, 324830941345, 12951273345282, 63596620804122, 2493395633726425, 15062005915534116, 584749646165678622, 4247497704703187089, 164155618660742879022
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\3, x^(3*k+2)/(3*k+2)!))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-2)/3)} binomial(n,3*k+2) * a(n-3*k-2).

A365909 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+2) / (5*k+2)! ).

Original entry on oeis.org

1, 0, 1, 0, 6, 0, 90, 1, 2520, 72, 113400, 5940, 7484401, 617760, 681084014, 81081000, 81730916280, 13232419201, 12505020896160, 2639867731518, 2376002176470000, 633568693965570, 548870403972290401, 180329793856173720, 151492831528555510516
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+2)/(5*k+2)!))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-2)/5)} binomial(n,5*k+2) * a(n-5*k-2).

A367839 Expansion of e.g.f. 1/(2 + x - exp(3*x)).

Original entry on oeis.org

1, 2, 17, 183, 2679, 48903, 1071621, 27394965, 800378019, 26307021483, 960739737777, 38595129840369, 1691405818822719, 80301792637126791, 4105701241574252445, 224912022483008478141, 13142159127790633537947, 815924005186398537216483
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-i*v[i]+sum(j=1, i, 3^j*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = -n * a(n-1) + Sum_{k=1..n} 3^k * binomial(n,k) * a(n-k).
Previous Showing 21-30 of 32 results. Next