A187784
Triangular array read by rows: T(n,k) is the number of ordered set partitions of {1,2,...,n} with exactly k singletons, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 0, 2, 1, 6, 0, 6, 7, 8, 36, 0, 24, 21, 100, 60, 240, 0, 120, 141, 372, 1170, 480, 1800, 0, 720, 743, 3584, 5166, 13440, 4200, 15120, 0, 5040, 5699, 22864, 67368, 68544, 159600, 40320, 141120, 0, 40320, 42241, 225684, 502200, 1161216, 922320, 1995840, 423360, 1451520, 0, 362880
Offset: 0
: 1;
: 0, 1;
: 1, 0, 2;
: 1, 6, 0, 6;
: 7, 8, 36, 0, 24;
: 21, 100, 60, 240, 0, 120;
: 141, 372, 1170, 480, 1800, 0, 720;
: 743, 3584, 5166, 13440, 4200, 15120, 0, 5040;
: 5699, 22864, 67368, 68544, 159600, 40320, 141120, 0, 40320;
-
with(combinat):
b:= proc(n, i, p) option remember; `if`(n=0, p!,
`if`(i<2, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, p+j)/j!, j=0..n/i)))
end:
T:= (n, k)-> binomial(n, k)*b(n-k$2, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 06 2015
-
nn=8;Range[0,nn]!CoefficientList[Series[1/(2-Exp[x]+x-y x),{x,0,nn}],{x,y}]//Grid
A332258
E.g.f.: 1 / (1 + x - sinh(x)).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 20, 1, 112, 1681, 492, 27721, 371624, 319177, 13461604, 171387217, 319071456, 11466038689, 143550642140, 484491620089, 15758152572952, 199089883272217, 1077471975974484, 32827750137627457, 427744154995090256, 3385134777669637681
Offset: 0
-
nmax = 25; CoefficientList[Series[1/(1 + x - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 2 k - 1] a[n - 2 k + 1], {k, 2, Ceiling[n/2]}]; Table[a[n], {n, 0, 25}]
-
seq(n)={Vec(serlaplace(1 / (1 + x - sinh(x + O(x*x^n)))))} \\ Andrew Howroyd, Feb 08 2020
A367838
Expansion of e.g.f. 1/(2 + x - exp(2*x)).
Original entry on oeis.org
1, 1, 6, 38, 344, 3832, 51408, 803952, 14371456, 289005440, 6457624832, 158719896832, 4255775425536, 123619815742464, 3867071262472192, 129610289219999744, 4633674344869756928, 176011269522607144960, 7079115958438736363520
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-i*v[i]+sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;
A367840
Expansion of e.g.f. 1/(2 + x - exp(4*x)).
Original entry on oeis.org
1, 3, 34, 514, 10456, 265704, 8103120, 288302480, 11722944896, 536262671488, 27256865214208, 1523936708699904, 92949383868668928, 6141694449341637632, 437033351625771001856, 33319937543640487708672, 2709708041047388536274944
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-i*v[i]+sum(j=1, i, 4^j*binomial(i, j)*v[i-j+1])); v;
A245854
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 1.
Original entry on oeis.org
1, 2, 12, 68, 520, 4542, 46550, 540136, 7045020, 101865410, 1619046418, 28053492348, 526430246264, 10636085523910, 230214619661790, 5314695463338704, 130356558777712468, 3385311352838750538, 92797887464933030762, 2677623216872061223780, 81123642038690958720048
Offset: 1
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 1) -b(n, 2):
seq(a(n), n=1..25);
-
With[{nn=30},CoefficientList[Series[1/(2-Exp[x])-1/(2-Exp[x]+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 29 2024 *)
A245855
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 2.
Original entry on oeis.org
1, 0, 6, 20, 120, 672, 5516, 40140, 368640, 3521870, 37445298, 422339502, 5215454426, 68144100780, 954428684280, 14160968076584, 222769496190060, 3692874342747114, 64493471050666430, 1181830474135532130, 22692074431844298558, 455404848204906308984
Offset: 2
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 2) -b(n, 3):
seq(a(n), n=2..25);
A306416
Number of ordered set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 0, 0, 2, 0, 26, 84, 950, 6000, 62522, 556116, 6259598, 69319848, 874356338, 11384093196, 161462123894, 2397736692144, 37994808171962, 631767062124564, 11088109048500158, 203828700127054008, 3928762035148317314, 79079452776283889820, 1661265965479375937030, 36332908076071038467520, 826376466514358722894154
Offset: 0
The a(4) = 2 ordered set partitions are: {{1,3},{2,4}}, {{2,4},{1,3}}.
Cf.
A000110,
A000126,
A000296,
A000670,
A001610,
A032032 (adjacencies allowed),
A052841 (singletons allowed),
A124323,
A169985,
A306417,
A324011 (orderless case),
A324012,
A324015.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Sum[Length[stn]!,{stn,Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]}],{n,0,10}]
A365908
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+2) / (3*k+2)! ).
Original entry on oeis.org
1, 0, 1, 0, 6, 1, 90, 42, 2521, 2268, 113742, 166321, 7543206, 16218930, 691242553, 2044833336, 83708046246, 324830941345, 12951273345282, 63596620804122, 2493395633726425, 15062005915534116, 584749646165678622, 4247497704703187089, 164155618660742879022
Offset: 0
A365909
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+2) / (5*k+2)! ).
Original entry on oeis.org
1, 0, 1, 0, 6, 0, 90, 1, 2520, 72, 113400, 5940, 7484401, 617760, 681084014, 81081000, 81730916280, 13232419201, 12505020896160, 2639867731518, 2376002176470000, 633568693965570, 548870403972290401, 180329793856173720, 151492831528555510516
Offset: 0
A367839
Expansion of e.g.f. 1/(2 + x - exp(3*x)).
Original entry on oeis.org
1, 2, 17, 183, 2679, 48903, 1071621, 27394965, 800378019, 26307021483, 960739737777, 38595129840369, 1691405818822719, 80301792637126791, 4105701241574252445, 224912022483008478141, 13142159127790633537947, 815924005186398537216483
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-i*v[i]+sum(j=1, i, 3^j*binomial(i, j)*v[i-j+1])); v;
Comments