cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 62 results. Next

A240879 Self-convolution of Sum(binomial(2*n, i), i=0..n).

Original entry on oeis.org

1, 6, 31, 150, 699, 3178, 14198, 62604, 273235, 1182786, 5085666, 21743956, 92522206, 392066340, 1655432524, 6967724312, 29245179267, 122442487474, 511487386730, 2132341655556, 8873167793578, 36861311739308, 152895342950196, 633290273209000, 2619653638855214, 10823294835350388
Offset: 0

Views

Author

Fung Lam, Apr 13 2014

Keywords

Crossrefs

Cf. A032443.

Programs

  • Mathematica
    CoefficientList[Series[((1/Sqrt[1-4*x] + 1/(1-4*x))/2)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 16 2014 *)

Formula

G.f. = (g.f. of A032443)^2.
n*a(n) = 32*(2*n-3)*a(n-3) + 48*(1-n)*a(n-2) + 6*(2*n-1)*a(n-1).
Asymptotics: a(n) ~ 2^(2*n)*((n+2)/4 + sqrt(n/Pi)).
Recurrence: (n-2)*n*a(n) = 2*n*(4*n-7)*a(n-1) - 8*(n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Apr 16 2014

A318110 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

0, 1, 1, 3, 3, 1, 26, 26, 11, 2, 367, 367, 167, 42, 5, 7142, 7142, 3352, 944, 163, 14, 176766, 176766, 84308, 25006, 4965, 638, 42, 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132, 186954535, 186954535, 90600599, 28120586, 6200455, 1010814, 121086, 9908, 429, 7566084686, 7566084686, 3683084984, 1156456088, 261067596, 44535120, 5829880, 574128, 39203, 1430
Offset: 0

Views

Author

Gheorghe Coserea, Sep 05 2018

Keywords

Examples

			A(x,t) = (1+t)*x + (3+3*t+t^2)*x^2 + (26+26*t+11*t^2+2*t^3)*x^3 + ...
Triangle starts:
n\k [0]       [1]       [2]      [3]      [4]     [5]     [6]    [7]  [8]
[0] 0;
[1] 1,        1;
[2] 3,        3,        1;
[3] 26,       26,       11,      2;
[4] 367,      367,      167,     42,      5;
[5] 7142,     7142,     3352,    944,     163,    14;
[6] 176766,   176766,   84308,   25006,   4965,   638,    42;
[7] 5304356,  5304356,  2554329, 779246,  165474, 24924,  2510,  132;
[8] 186954535,186954535,90600599,28120586,6200455,1010814,121086,9908,429;
[9] ...
		

Crossrefs

Column 0 gives A262301.
Main diagonal gives A000108(n-1) for n>0.
Second diagonal gives A032443(n-1) for n>0.

Programs

  • Mathematica
    rows = 10; Clear[A]; A[x_, t_] = (1+t)x;
    Do[A[x_, t_] = Series[x t/(1-A[x, t]) + D[A[x, t], t], {x, 0, n}, {t, 0, n}] // Normal, {n, 2 rows}];
    CoefficientList[#, t]& /@ CoefficientList[A[x, t], x] /. {} -> {0} // Take[#, rows]& // Flatten (* Jean-François Alcover, Oct 23 2018 *)
  • PARI
    seq(N) = {
      my(x='x+O('x^N), t='t, F0=(1+t)*x, F1=0, n=1);
      while(n++,
        F1 = F0^2; F1 = F1 - deriv(F1,'t)/2 + deriv(F0,'t) + x*t;
        if (F1 == F0, break()); F0 = F1);
      concat([[0]], apply(Vecrev, Vec(F0)));
    };
    concat(seq(10))
    \\ test: y=Ser(apply(p->Polrev(p,'t), seq(101)), 'x); y == x*'t/(1-y) + deriv(y,'t)

Formula

A(x,t) = Sum_{n>=0} P_n(t)*x^n, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, satisfies:
A = x*t/(1-A) + deriv(A,t), with A(0,t) = 0, deriv(A,x)(0,t) = 1+t (deriv(A,v) represents the derivative of A with respect to variable v).

A360143 a(n) = Sum_{k=0..n} binomial(2*n+2*k,n-k).

Original entry on oeis.org

1, 3, 13, 59, 271, 1250, 5775, 26696, 123423, 570576, 2637306, 12187755, 56312089, 260134905, 1201493926, 5548533913, 25619837773, 118283258215, 546041467522, 2520515546083, 11633752319476, 53693477980816, 247798435809211, 1143547904185879, 5277058908767419
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2023

Keywords

Crossrefs

Programs

  • Maple
    A360143 := proc(n)
        add(binomial(2*n+2*k,n-k),k=0..n) ;
    end proc:
    seq(A360143(n),n=0..70) ;# R. J. Mathar, Mar 12 2023
  • Mathematica
    Table[Sum[Binomial[2n+2k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+2*k, n-k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x*(2/(1+sqrt(1-4*x)))^4)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x * c(x)^4) ), where c(x) is the g.f. of A000108.
D-finite with recurrence +n*(n-7)*a(n) -(7*n-4)*(n-7)*a(n-1) +4*(n^2-13*n+17)*a(n-2) +(35*n^2-217*n+304)*a(n-3) -2*(n-2)*(7*n-29)*a(n-4) +4*(n-2)*(2*n-9)*a(n-5)=0. - R. J. Mathar, Mar 12 2023
a(n) = binomial(2*n, n)*hypergeom([1, -n, 1/2+n, 1+n], [(1+n)/3, (2+n)/3, 1+n/3], -4/27). - Stefano Spezia, Jun 17 2025

A383916 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(3*n).

Original entry on oeis.org

1, 1, 68, 22770, 21143488, 41904629550, 151957171590144, 910666718387157732, 8390164064875701321728, 112583179357513548960803670, 2109812207969377622615440752640, 53397692462483465346961668429307836, 1775866125092261344436828225211633500160, 75857512919848315654302238627976991244564300
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(3*n), {k, 0, n}], {n, 1, 15}]]

Formula

a(n) ~ 2^(2*n + 1/2) * r^(3*n + 1) * n^(3*n) / (sqrt(3 - r^2) * exp(3*n) * (1 - r^2)^n), where r = 0.92488761106894648930384927930334708844525256369797556858640... is the root of the equation (1 + r)/(1 - r) = exp(3/r).

A383917 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(5*n).

Original entry on oeis.org

1, 1, 1028, 14545530, 1127435263168, 309320354959336350, 232325928732003715014144, 403150958104730561230009068564, 1432706082674749593552098155989352448, 9528431104471630510834164178027409070527670, 110580781643902847320855308323644986008860441968640
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2025

Keywords

Comments

In general, for m>=1, Sum_{k=0..n} binomial(2*n, n-k) * k^(m*n) ~ 2^(2*n + 1/2) * r^(m*n + 1) * n^(m*n) / (sqrt(m + (2-m)*r^2) * exp(m*n) * (1 - r^2)^n), where r is the root of the equation (1 + r)/(1 - r) = exp(m/r).

Crossrefs

Cf. A032443 (m=0), A345876 (m=1), A209289/2 (m=2), A383916 (m=3), A383853 (m=4).

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(5*n), {k, 0, n}], {n, 1, 12}]]

Formula

a(n) ~ 2^(2*n + 1/2) * r^(5*n + 1) * n^(5*n) / (sqrt(5 - 3*r^2) * exp(5*n) * (1 - r^2)^n), where r = 0.98743428968604456152277643726278132237092161504496484119319... is the root of the equation (1 + r)/(1 - r) = exp(5/r).

A124234 Riordan array (1/(1-x), x(1+x)^2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 4, 11, 7, 1, 1, 4, 15, 22, 9, 1, 1, 4, 16, 42, 37, 11, 1, 1, 4, 16, 57, 93, 56, 13, 1, 1, 4, 16, 63, 163, 176, 79, 15, 1, 1, 4, 16, 64, 219, 386, 299, 106, 17, 1, 1, 4, 16, 64, 247, 638, 794, 470, 137, 19, 1
Offset: 0

Views

Author

Paul Barry, Oct 22 2006

Keywords

Comments

Row sums are A077864. Diagonal sums are A004695(n+3). T(2n,n) is A032443.

Examples

			Triangle begins
1,
1, 1,
1, 3, 1,
1, 4, 5, 1,
1, 4, 11, 7, 1,
1, 4, 15, 22, 9, 1,
1, 4, 16, 42, 37, 11, 1
		

Crossrefs

Programs

  • PARI
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(sum(j=0, n-k, binomial(2*k, j)), ", ")); print();); \\ Michel Marcus, Nov 05 2016

Formula

T(n,k) = Sum_{j=0..n-k} C(2k,j).

A167024 Triangle read by rows: T(n, m) = binomial(n, m)* Sum_{k=0..m} binomial(n, k) for 0 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 6, 4, 1, 12, 21, 8, 1, 20, 66, 60, 16, 1, 30, 160, 260, 155, 32, 1, 42, 330, 840, 855, 378, 64, 1, 56, 609, 2240, 3465, 2520, 889, 128, 1, 72, 1036, 5208, 11410, 12264, 6916, 2040, 256, 1, 90, 1656, 10920, 32256, 48132, 39144, 18072, 4599, 512
Offset: 0

Views

Author

Roger L. Bagula, Oct 27 2009

Keywords

Comments

Row sums are A032443(n).

Examples

			1,
1, 2,
1, 6, 4,
1, 12, 21, 8,
1, 20, 66, 60, 16,
1, 30, 160, 260, 155, 32,
1, 42, 330, 840, 855, 378, 64,
1, 56, 609, 2240, 3465, 2520, 889, 128,
1, 72, 1036, 5208, 11410, 12264, 6916, 2040, 256,
1, 90, 1656, 10920, 32256, 48132, 39144, 18072, 4599, 512,
1, 110, 2520, 21120, 81060, 160776, 178080, 116160, 45585, 10230, 1024
		

Crossrefs

Programs

  • GAP
    t:=Flat(List([0..10],n->List([0..n],m->Binomial(n,m)*Sum([0..m],k->Binomial(n,k)))));; Print(t); # Muniru A Asiru, Dec 28 2018
  • Maple
    T:=(n, m)-> binomial(n, m)*add(binomial(n, k), k=0..m): seq(seq(T(n, m), m=0..n), n=0..9); # Muniru A Asiru, Dec 28 2018
  • Mathematica
    T[m_, n_] = If[m == 0 && n == 0, 1, Sum[Binomial[m, n]*Binomial[m, k], {k, 0, n}]]
    Flatten[Table[Table[T[m, n], {n, 0, m}], {m, 0, 10}]]
    T[n_,k_] := Binomial[n, k] (2^n - Binomial[n, k + 1] Hypergeometric2F1[1, 1 -n + k, k + 2, -1]); Table[T[n,k], {n,0,8}, {k,0,n}] // Flatten (* Peter Luschny, Dec 28 2018 *)

Formula

T(n, m) = binomial(n,m)*A008949(n,m). [Nov 03 2009]
G.f.: (1/x)*d(arctanh(N(x,y)))/dy, where N(x,y) is g.f. of Narayana numbers (A001263). - Vladimir Kruchinin, Apr 11 2018
T(n, k) = binomial(n, k)*(2^n - binomial(n, 1+k)*hypergeom([1, 1+k-n], [k+2], -1)). - Peter Luschny, Dec 28 2018

Extensions

Introduced OEIS notational standards in the definition - The Assoc. Editors of the OEIS, Nov 05 2009

A176564 Triangle T(n,m)= binomial(2*n,m) + binomial(2*n,n-m) -binomial(2*n,n) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, -6, -14, -6, 1, 1, -32, -87, -87, -32, 1, 1, -120, -363, -484, -363, -120, 1, 1, -415, -1339, -2067, -2067, -1339, -415, 1, 1, -1414, -4742, -7942, -9230, -7942, -4742, -1414, 1, 1, -4844, -16643, -29240, -36992, -36992, -29240
Offset: 0

Views

Author

Roger L. Bagula, Apr 20 2010

Keywords

Comments

Row sums are 1, 2, 4, 4, -24, -236, -1448, -7640, -37424, -175436,... = 2*A032443(n) -A037965(n+1).

Examples

			The triangle starts in row n=0 with columns 0<=m<=n as:
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, -6, -14, -6, 1;
1, -32, -87, -87, -32, 1;
1, -120, -363, -484, -363, -120, 1;
1, -415, -1339, -2067, -2067, -1339, -415, 1;
1, -1414, -4742, -7942, -9230, -7942, -4742, -1414, 1;
1, -4844, -16643, -29240, -36992, -36992, -29240, -16643, -4844, 1;
1, -16776, -58596, -106096, -141151, -153748, -141151, -106096, -58596, -16776, 1;
		

Programs

  • Maple
    A176564 := proc(n,m) binomial(2*n,m)+binomial(2*n,n-m) -binomial(2*n,n) ; end proc:
  • Mathematica
    t[n_, m_] = Binomial[2*n, m] + Binomial[2*n, n - m] - (Binomial[2*n, 0] + Binomial[2*n, n]) + 1;
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

T(n,m) = T(n,n-m).

A204449 Exponential (or binomial) half-convolution of A000032 (Lucas) with itself.

Original entry on oeis.org

4, 2, 8, 17, 84, 177, 737, 1857, 7732, 19457, 78223, 203777, 809145, 2134017, 8349013, 22347777, 86533892, 234029057, 897748577, 2450784257, 9328491339, 25664946177, 97021416973, 268766806017, 1009936510009, 2814562533377
Offset: 0

Views

Author

Wolfdieter Lang, Jan 16 2012

Keywords

Comments

For the definition of the exponential (also known as binomial) half-convolution of a sequence with itself see A203576. There the rule for the e.g.f. is also found.
The other half of this exponential half-convolution is found under A204450.

Examples

			With A000032 = {2, 1, 3, 4, 7, 11,...}
  a(4) = 1*2*7 + 4*1*4 + 6*3*3 = 84,
  a(5) = 1*2*11 + 5*1*7 + 10*3*4 = 177.
		

Crossrefs

Cf. A000032, 2*A203579 (exponential convolution), A204450.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*LucasL[k]*LucasL[n-k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 25 2019 *)

Formula

a(n) = sum(binomial(n,k)*L(k)*L(n-k),k=0..floor(n/2)), n>=0, with L(n)=A000032(n).
E.g.f.: (l(x)^2 + L2(x^2))/2 with the e.g.f. l(x) of A000032, and the o.g.f. L2(x) of the sequence {(L(n)/n!)^2}.
l(x)^2 = 2*exp(x)*(cosh(sqrt(5)*x)+1) (see 2*A203579).
L2(x^2) = BesselI(0,2*phi*x) + BesselI(0,2*(phi-1)*x) + 2*BesselI(0,2*I*x), with the golden section phi:=(1+sqrt(5))/2, and for BesselI see Abramowitz-Stegun (reference and link given under A008277), p. 375, eq. 9.6.10.
BesselI(0,2*sqrt(x)) = hypergeom([],[1],x) is the e.g.f. of {1/n!}.
Bisection: a(2*k) = (2^(2*k)+binomial(2*k,k))*L(2*k)/2 +1 + ((-1)^k)*binomial(2*k,k), a(2*k+1) = 2^(2*k)*L(2*k+1)+1, k>=0. For (2^(2*k)+binomial(2*k,k))/2 see A032443(k).

A307665 A(n,k) = Sum_{j=0..floor(n/k)} binomial(2*n,k*j+n), square array A(n,k) read by antidiagonals, for n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 3, 1, 2, 11, 1, 2, 7, 42, 1, 2, 6, 26, 163, 1, 2, 6, 21, 99, 638, 1, 2, 6, 20, 78, 382, 2510, 1, 2, 6, 20, 71, 297, 1486, 9908, 1, 2, 6, 20, 70, 262, 1145, 5812, 39203, 1, 2, 6, 20, 70, 253, 990, 4447, 22819, 155382, 1, 2, 6, 20, 70, 252, 936, 3796, 17358, 89846, 616666
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2019

Keywords

Examples

			Square array begins:
      1,    1,    1,    1,    1,    1,    1,    1, ...
      3,    2,    2,    2,    2,    2,    2,    2, ...
     11,    7,    6,    6,    6,    6,    6,    6, ...
     42,   26,   21,   20,   20,   20,   20,   20, ...
    163,   99,   78,   71,   70,   70,   70,   70, ...
    638,  382,  297,  262,  253,  252,  252,  252, ...
   2510, 1486, 1145,  990,  936,  925,  924,  924, ...
   9908, 5812, 4447, 3796, 3523, 3446, 3433, 3432, ...
		

Crossrefs

Columns 1-2 give A032443, A114121.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[2*n, k*j + n], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 13 2021*)
Previous Showing 51-60 of 62 results. Next