A240879
Self-convolution of Sum(binomial(2*n, i), i=0..n).
Original entry on oeis.org
1, 6, 31, 150, 699, 3178, 14198, 62604, 273235, 1182786, 5085666, 21743956, 92522206, 392066340, 1655432524, 6967724312, 29245179267, 122442487474, 511487386730, 2132341655556, 8873167793578, 36861311739308, 152895342950196, 633290273209000, 2619653638855214, 10823294835350388
Offset: 0
-
CoefficientList[Series[((1/Sqrt[1-4*x] + 1/(1-4*x))/2)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 16 2014 *)
A318110
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
0, 1, 1, 3, 3, 1, 26, 26, 11, 2, 367, 367, 167, 42, 5, 7142, 7142, 3352, 944, 163, 14, 176766, 176766, 84308, 25006, 4965, 638, 42, 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132, 186954535, 186954535, 90600599, 28120586, 6200455, 1010814, 121086, 9908, 429, 7566084686, 7566084686, 3683084984, 1156456088, 261067596, 44535120, 5829880, 574128, 39203, 1430
Offset: 0
A(x,t) = (1+t)*x + (3+3*t+t^2)*x^2 + (26+26*t+11*t^2+2*t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 0;
[1] 1, 1;
[2] 3, 3, 1;
[3] 26, 26, 11, 2;
[4] 367, 367, 167, 42, 5;
[5] 7142, 7142, 3352, 944, 163, 14;
[6] 176766, 176766, 84308, 25006, 4965, 638, 42;
[7] 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132;
[8] 186954535,186954535,90600599,28120586,6200455,1010814,121086,9908,429;
[9] ...
Main diagonal gives
A000108(n-1) for n>0.
Second diagonal gives
A032443(n-1) for n>0.
-
rows = 10; Clear[A]; A[x_, t_] = (1+t)x;
Do[A[x_, t_] = Series[x t/(1-A[x, t]) + D[A[x, t], t], {x, 0, n}, {t, 0, n}] // Normal, {n, 2 rows}];
CoefficientList[#, t]& /@ CoefficientList[A[x, t], x] /. {} -> {0} // Take[#, rows]& // Flatten (* Jean-François Alcover, Oct 23 2018 *)
-
seq(N) = {
my(x='x+O('x^N), t='t, F0=(1+t)*x, F1=0, n=1);
while(n++,
F1 = F0^2; F1 = F1 - deriv(F1,'t)/2 + deriv(F0,'t) + x*t;
if (F1 == F0, break()); F0 = F1);
concat([[0]], apply(Vecrev, Vec(F0)));
};
concat(seq(10))
\\ test: y=Ser(apply(p->Polrev(p,'t), seq(101)), 'x); y == x*'t/(1-y) + deriv(y,'t)
A360143
a(n) = Sum_{k=0..n} binomial(2*n+2*k,n-k).
Original entry on oeis.org
1, 3, 13, 59, 271, 1250, 5775, 26696, 123423, 570576, 2637306, 12187755, 56312089, 260134905, 1201493926, 5548533913, 25619837773, 118283258215, 546041467522, 2520515546083, 11633752319476, 53693477980816, 247798435809211, 1143547904185879, 5277058908767419
Offset: 0
-
A360143 := proc(n)
add(binomial(2*n+2*k,n-k),k=0..n) ;
end proc:
seq(A360143(n),n=0..70) ;# R. J. Mathar, Mar 12 2023
-
Table[Sum[Binomial[2n+2k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jul 23 2025 *)
-
a(n) = sum(k=0, n, binomial(2*n+2*k, n-k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x*(2/(1+sqrt(1-4*x)))^4)))
A383916
a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(3*n).
Original entry on oeis.org
1, 1, 68, 22770, 21143488, 41904629550, 151957171590144, 910666718387157732, 8390164064875701321728, 112583179357513548960803670, 2109812207969377622615440752640, 53397692462483465346961668429307836, 1775866125092261344436828225211633500160, 75857512919848315654302238627976991244564300
Offset: 0
-
Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(3*n), {k, 0, n}], {n, 1, 15}]]
A383917
a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(5*n).
Original entry on oeis.org
1, 1, 1028, 14545530, 1127435263168, 309320354959336350, 232325928732003715014144, 403150958104730561230009068564, 1432706082674749593552098155989352448, 9528431104471630510834164178027409070527670, 110580781643902847320855308323644986008860441968640
Offset: 0
-
Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(5*n), {k, 0, n}], {n, 1, 12}]]
A124234
Riordan array (1/(1-x), x(1+x)^2).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 4, 11, 7, 1, 1, 4, 15, 22, 9, 1, 1, 4, 16, 42, 37, 11, 1, 1, 4, 16, 57, 93, 56, 13, 1, 1, 4, 16, 63, 163, 176, 79, 15, 1, 1, 4, 16, 64, 219, 386, 299, 106, 17, 1, 1, 4, 16, 64, 247, 638, 794, 470, 137, 19, 1
Offset: 0
Triangle begins
1,
1, 1,
1, 3, 1,
1, 4, 5, 1,
1, 4, 11, 7, 1,
1, 4, 15, 22, 9, 1,
1, 4, 16, 42, 37, 11, 1
-
tabl(nn) = for (n=0, nn, for (k=0, n, print1(sum(j=0, n-k, binomial(2*k, j)), ", ")); print();); \\ Michel Marcus, Nov 05 2016
A167024
Triangle read by rows: T(n, m) = binomial(n, m)* Sum_{k=0..m} binomial(n, k) for 0 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 6, 4, 1, 12, 21, 8, 1, 20, 66, 60, 16, 1, 30, 160, 260, 155, 32, 1, 42, 330, 840, 855, 378, 64, 1, 56, 609, 2240, 3465, 2520, 889, 128, 1, 72, 1036, 5208, 11410, 12264, 6916, 2040, 256, 1, 90, 1656, 10920, 32256, 48132, 39144, 18072, 4599, 512
Offset: 0
1,
1, 2,
1, 6, 4,
1, 12, 21, 8,
1, 20, 66, 60, 16,
1, 30, 160, 260, 155, 32,
1, 42, 330, 840, 855, 378, 64,
1, 56, 609, 2240, 3465, 2520, 889, 128,
1, 72, 1036, 5208, 11410, 12264, 6916, 2040, 256,
1, 90, 1656, 10920, 32256, 48132, 39144, 18072, 4599, 512,
1, 110, 2520, 21120, 81060, 160776, 178080, 116160, 45585, 10230, 1024
-
t:=Flat(List([0..10],n->List([0..n],m->Binomial(n,m)*Sum([0..m],k->Binomial(n,k)))));; Print(t); # Muniru A Asiru, Dec 28 2018
-
T:=(n, m)-> binomial(n, m)*add(binomial(n, k), k=0..m): seq(seq(T(n, m), m=0..n), n=0..9); # Muniru A Asiru, Dec 28 2018
-
T[m_, n_] = If[m == 0 && n == 0, 1, Sum[Binomial[m, n]*Binomial[m, k], {k, 0, n}]]
Flatten[Table[Table[T[m, n], {n, 0, m}], {m, 0, 10}]]
T[n_,k_] := Binomial[n, k] (2^n - Binomial[n, k + 1] Hypergeometric2F1[1, 1 -n + k, k + 2, -1]); Table[T[n,k], {n,0,8}, {k,0,n}] // Flatten (* Peter Luschny, Dec 28 2018 *)
Introduced OEIS notational standards in the definition - The Assoc. Editors of the OEIS, Nov 05 2009
A176564
Triangle T(n,m)= binomial(2*n,m) + binomial(2*n,n-m) -binomial(2*n,n) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, -6, -14, -6, 1, 1, -32, -87, -87, -32, 1, 1, -120, -363, -484, -363, -120, 1, 1, -415, -1339, -2067, -2067, -1339, -415, 1, 1, -1414, -4742, -7942, -9230, -7942, -4742, -1414, 1, 1, -4844, -16643, -29240, -36992, -36992, -29240
Offset: 0
The triangle starts in row n=0 with columns 0<=m<=n as:
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, -6, -14, -6, 1;
1, -32, -87, -87, -32, 1;
1, -120, -363, -484, -363, -120, 1;
1, -415, -1339, -2067, -2067, -1339, -415, 1;
1, -1414, -4742, -7942, -9230, -7942, -4742, -1414, 1;
1, -4844, -16643, -29240, -36992, -36992, -29240, -16643, -4844, 1;
1, -16776, -58596, -106096, -141151, -153748, -141151, -106096, -58596, -16776, 1;
-
A176564 := proc(n,m) binomial(2*n,m)+binomial(2*n,n-m) -binomial(2*n,n) ; end proc:
-
t[n_, m_] = Binomial[2*n, m] + Binomial[2*n, n - m] - (Binomial[2*n, 0] + Binomial[2*n, n]) + 1;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
A204449
Exponential (or binomial) half-convolution of A000032 (Lucas) with itself.
Original entry on oeis.org
4, 2, 8, 17, 84, 177, 737, 1857, 7732, 19457, 78223, 203777, 809145, 2134017, 8349013, 22347777, 86533892, 234029057, 897748577, 2450784257, 9328491339, 25664946177, 97021416973, 268766806017, 1009936510009, 2814562533377
Offset: 0
With A000032 = {2, 1, 3, 4, 7, 11,...}
a(4) = 1*2*7 + 4*1*4 + 6*3*3 = 84,
a(5) = 1*2*11 + 5*1*7 + 10*3*4 = 177.
-
Table[Sum[Binomial[n, k]*LucasL[k]*LucasL[n-k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 25 2019 *)
A307665
A(n,k) = Sum_{j=0..floor(n/k)} binomial(2*n,k*j+n), square array A(n,k) read by antidiagonals, for n >= 0, k >= 1.
Original entry on oeis.org
1, 1, 3, 1, 2, 11, 1, 2, 7, 42, 1, 2, 6, 26, 163, 1, 2, 6, 21, 99, 638, 1, 2, 6, 20, 78, 382, 2510, 1, 2, 6, 20, 71, 297, 1486, 9908, 1, 2, 6, 20, 70, 262, 1145, 5812, 39203, 1, 2, 6, 20, 70, 253, 990, 4447, 22819, 155382, 1, 2, 6, 20, 70, 252, 936, 3796, 17358, 89846, 616666
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 2, 2, 2, 2, 2, 2, ...
11, 7, 6, 6, 6, 6, 6, 6, ...
42, 26, 21, 20, 20, 20, 20, 20, ...
163, 99, 78, 71, 70, 70, 70, 70, ...
638, 382, 297, 262, 253, 252, 252, 252, ...
2510, 1486, 1145, 990, 936, 925, 924, 924, ...
9908, 5812, 4447, 3796, 3523, 3446, 3433, 3432, ...
-
T[n_, k_] := Sum[Binomial[2*n, k*j + n], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 13 2021*)
Comments