cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 213 results. Next

A338650 Number of divisors of n which are greater than 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 4, 1, 3, 2, 5, 1, 7, 1, 2, 3, 3, 3, 4, 1, 6, 3, 2, 1, 7, 2, 2, 2, 5, 1, 7, 3, 3, 2, 2, 2, 7, 1, 4, 4, 5, 1, 4, 1, 5, 5, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 6 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(7 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 7, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>6); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0], Vec(sum(k=7, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(7*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=7} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=7} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 69/20), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(6) prepended by David A. Corneth, Jun 13 2022

A338651 Number of divisors of n which are greater than 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 4, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 3, 2, 1, 6, 2, 2, 2, 5, 1, 7, 2, 3, 2, 2, 2, 7, 1, 3, 4, 5, 1, 4, 1, 5, 4, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 7 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(8 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 8, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>7); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0], Vec(sum(k=8, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(8*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=8} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=8} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 503/140), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(7) prepended by David A. Corneth, Jun 13 2022

A338652 Number of divisors of n which are greater than 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 2, 3, 2, 2, 1, 6, 1, 2, 3, 3, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 4, 1, 7, 2, 3, 2, 2, 2, 6, 1, 3, 4, 5, 1, 4, 1, 4, 4, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 8 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(9 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 9, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>8); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=9, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(9*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=9} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=9} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 1041/280), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(8) prepended by David A. Corneth, Jun 13 2022

A338653 Number of divisors of n which are greater than 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 6, 1, 2, 2, 3, 2, 4, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 2, 4, 1, 5, 2, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 4, 1, 4, 4, 2, 1, 6, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 9 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(10 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 10, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
    Table[Count[Divisors[n],?(#>9&)],{n,120}] (* _Harvey P. Dale, Jan 09 2025 *)
  • PARI
    a(n) = sumdiv(n, d, d>9); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=10, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(10*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=10} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=10} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 9649/2520), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(9) prepended by David A. Corneth, Jun 13 2022

A051777 Triangle read by rows, where row (n) = n mod n, n mod (n-1), n mod (n-2), ...n mod 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 1, 2, 3, 0, 2, 0, 0, 0, 1, 2, 3, 4, 1, 0, 1, 0, 0, 1, 2, 3, 4, 0, 2, 1, 0, 0, 0, 1, 2, 3, 4, 5, 1, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 0, 2, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 1, 3, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 0, 2, 4, 2, 2, 0, 0
Offset: 1

Views

Author

Asher Auel, Dec 09 1999

Keywords

Comments

Also, rectangular array read by antidiagonals, a(n, k) = k mod n (k >= 0, n >= 1). Cf. A048158, A051127. - David Wasserman, Oct 01 2008
Central terms: a(2*n - 1, n) = n - 1. - Reinhard Zumkeller, Jan 25 2011

Examples

			row (5) = 5 mod 5, 5 mod 4, 5 mod 3, 5 mod 2, 5 mod 1 = 0, 1, 2, 1, 0.
0 ;
0  0 ;
0  1  0 ;
0  1  0  0 ;
0  1  2  1  0;
0  1  2  0  0  0 ;
0  1  2  3  1  1  0 ;
0  1  2  3  0  2  0  0;
0  1  2  3  4  1  0  1  0 ;
0  1  2  3  4  0  2  1  0  0 ;
0  1  2  3  4  5  1  3  2  1  0 ;
0  1  2  3  4  5  0  2  0  0  0  0 ;
0  1  2  3  4  5  6  1  3  1  1  1  0 ;
		

Crossrefs

Cf. A051778. Row sums give A004125. Number of 0's in row n gives A000005 (tau(n)). Number of 1's in row n+1 gives A032741(n).

Programs

  • Haskell
    a051777 n k = a051777_row n !! (k-1)
    a051777_row n = map (mod n) [n, n-1 .. 1]
    a051777_tabl = map a051777_row [1..]
    -- Reinhard Zumkeller, Jan 25 2011
  • Mathematica
    Flatten[Table[Mod[n,Range[n,1,-1]],{n,20}]] (* Harvey P. Dale, Nov 30 2011 *)

A276634 Sum of cubes of proper divisors of n.

Original entry on oeis.org

0, 1, 1, 9, 1, 36, 1, 73, 28, 134, 1, 316, 1, 352, 153, 585, 1, 981, 1, 1198, 371, 1340, 1, 2556, 126, 2206, 757, 3160, 1, 4752, 1, 4681, 1359, 4922, 469, 8605, 1, 6868, 2225, 9710, 1, 12600, 1, 12052, 4257, 12176, 1, 20476, 344, 16759, 4941, 19846, 1, 26496, 1457, 25624, 6887, 24398, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 08 2016

Keywords

Comments

More generally, the Dirichlet generating function for the sum of k-th powers of proper divisors of n is zeta(s-k)*(zeta(s) - 1).

Examples

			a(10) = 1^3 + 2^3 + 5^3 = 134, because 10 has 3 proper divisors {1,2,5}.
a(11) = 1^3 = 1, because 11 has 1 proper divisor {1}.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(3, n) - n^3: n in [1..70]]; // Vincenzo Librandi, Sep 09 2016
  • Mathematica
    Table[DivisorSigma[3, n] - n^3, {n, 70}]
  • PARI
    a(n) = sigma(n, 3) - n^3; \\ Michel Marcus, Sep 08 2016
    

Formula

a(n) = 1 if n is prime.
a(p^k) = (p^(3*k) - 1)/(p^3 - 1) for p prime.
Dirichlet g.f.: zeta(s-3)*(zeta(s) - 1).
a(n) = A001158(n) - A000578(n).
A000035(a(n)) = A053867(n).
Sum_{n=1..k} a(n) ~ k^2*(Pi^4*k^2/90 - (k + 1)^2)/4.
G.f.: -x*(1 + 4*x + x^2)/(1 - x)^4 + Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 17 2017

A284288 Numbers n such that the average of the strong divisors of n is an integer.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 28, 29, 31, 37, 41, 43, 47, 49, 53, 54, 56, 59, 61, 64, 67, 68, 71, 73, 79, 81, 83, 89, 91, 97, 98, 99, 100, 101, 103, 107, 109, 113, 121, 127, 131, 133, 137, 138, 139, 148, 149, 151, 154, 157, 163, 165, 167, 169, 173, 179, 181, 188, 191, 192, 193, 197, 199
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 24 2017

Keywords

Comments

We say d is a strong divisor of n iff d is a divisor of n and d > 1.
Numbers n such that A032741(n) divides A039653(n).
All primes and squares of primes are in this sequence.
Positions of ones in A296082 and A296084. - Antti Karttunen, Dec 05 2017

Examples

			28 is in the sequence because 28 has 6 divisors {1, 2, 4, 7, 14, 28} therefore 5 strong divisors {2, 4, 7, 14, 28}, 2 + 4 + 7 + 14 + 28 = 55 and 5 divides 55.
		

Crossrefs

Cf. A000203, A000430, A003601, A023884, A023886, A032741, A039653, A296082, A296084 (characteristic function).

Programs

  • Maple
    filter:= proc(n) local d,t;
      d:= numtheory:-divisors(n) minus {1};
      convert(d,`+`) mod nops(d) = 0
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Mar 27 2017
  • Mathematica
    Select[Range[2, 200], Mod[DivisorSigma[1, #1] - 1, DivisorSigma[0, #1] - 1] == 0 &]
  • PARI
    for(n=2, 200, if((sigma(n) - 1)%(numdiv(n) - 1)==0, print1(n,", "))) \\ Indranil Ghosh, Mar 24 2017
    
  • Python
    from sympy.ntheory import divisor_sigma, divisor_count
    print([n for n in range(2, 201) if (divisor_sigma(n) - 1)%(divisor_count(n) - 1) == 0]) # Indranil Ghosh, Mar 24 2017

A293524 a(n) = Product_{d|n, d>1} prime(A052409(d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 30, 6, 8, 2, 48, 2, 8, 8, 210, 2, 48, 2, 48, 8, 8, 2, 480, 6, 8, 30, 48, 2, 128, 2, 2310, 8, 8, 8, 864, 2, 8, 8, 480, 2, 128, 2, 48, 48, 8, 2, 6720, 6, 48, 8, 48, 2, 480, 8, 480, 8, 8, 2, 3072, 2, 8, 48, 30030, 8, 128, 2, 48, 8, 128, 2, 17280, 2, 8, 48, 48, 8, 128, 2, 6720, 210, 8, 2, 3072, 8, 8, 8, 480
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Programs

  • PARI
    A293524(n) = { my(m=1,e); fordiv(n,d, if(d>1, e = ispower(d); if(!e, m += m, m *= prime(e)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(A052409(d)).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A183096(n).
A064989(a(n)) = A294875(n).

A294891 Number of proper divisors d of n such that Stern polynomial B(d,x) is irreducible.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 2, 2, 2, 0, 2, 1, 2, 1, 2, 0, 3, 0, 1, 2, 2, 2, 2, 0, 2, 2, 2, 0, 3, 0, 2, 2, 2, 0, 2, 1, 3, 2, 2, 0, 2, 2, 2, 2, 2, 0, 3, 0, 2, 2, 1, 2, 3, 0, 2, 2, 3, 0, 2, 0, 2, 3, 2, 2, 3, 0, 2, 1, 2, 0, 3, 2, 2, 2, 2, 0, 3, 2, 2, 2, 2, 2, 2, 0, 2, 2, 3, 0, 3, 0, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n=50, with proper divisors [1, 2, 5, 10, 25], 2, 5, and 25 are larger than one and included in A186891, thus a(50) = 3.
		

Crossrefs

Cf. also A294881, A294901.
Differs from A087624 for the first time at n=50.

Programs

  • PARI
    ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
    A283991(n) = polisirreducible(ps(n));
    A294891(n) = sumdiv(n,d,(dA283991(d));

Formula

a(n) = Sum_{d|n, dA283991(d).
a(n) + A294892(n) = A032741(n).
a(n) = A294893(n) - A283991(n).

A294892 Number of proper divisors d of n such that either d=1 or Stern polynomial B(d,x) is reducible.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 4, 1, 4, 1, 1, 1, 6, 1, 1, 1, 5, 1, 4, 1, 3, 3, 1, 1, 7, 1, 2, 1, 3, 1, 5, 1, 5, 1, 1, 1, 8, 1, 1, 3, 5, 1, 4, 1, 3, 1, 4, 1, 9, 1, 1, 2, 3, 1, 4, 1, 7, 3, 1, 1, 8, 1, 1, 1, 5, 1, 8, 1, 3, 1, 1, 1, 9, 1, 3, 3, 5, 1, 4, 1, 5, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n=48, its proper divisors are [1, 2, 3, 4, 6, 8, 12, 16, 24]. After 1, the divisors 4, 6, 8, 12, 16 and 24 are not found in A186891, thus a(48) = 1+6 = 7.
For n=50, its proper divisors are [1, 2, 5, 10, 25]. After 1, only 10 is not found in A186891, thus a(50) = 1+1 = 2.
		

Crossrefs

Programs

  • PARI
    ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
    A283991(n) = polisirreducible(ps(n));
    A294892(n) = sumdiv(n,d,(dA283991(d)));

Formula

a(n) = Sum_{d|n, dA283991(d)).
a(n) + A294891(n) = A032741(n).
a(n) = A294894(n) + A283991(n) - 1.
Previous Showing 61-70 of 213 results. Next