A097137
Convolution of 3^n and floor(n/2).
Original entry on oeis.org
0, 0, 1, 4, 14, 44, 135, 408, 1228, 3688, 11069, 33212, 99642, 298932, 896803, 2690416, 8071256, 24213776, 72641337, 217924020, 653772070, 1961316220, 5883948671, 17651846024, 52955538084, 158866614264, 476599842805
Offset: 0
-
a:=[0,0,1,4];; for n in [5..30] do a[n]:=4*a[n-1]-2*a[n-2]-4*a[n-3] +3*a[n-4]; od; a; # G. C. Greubel, Jul 14 2019
-
[Round((3*3^n-4*n-4)/16): n in [0..30]]; // Vincenzo Librandi, Jun 25 2011
-
A097137 := proc(n) add( floor(3^i/8),i=0..n) ; end proc:
-
CoefficientList[Series[x^2/((1-x)^2(1-3x)(1+x)),{x,0,30}],x] (* Harvey P. Dale, Mar 11 2011 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(x^2/((1-x)^2*(1-3*x)*(1+x)))) \\ G. C. Greubel, Jul 14 2019
-
(x^2/((1-x)^2*(1-3*x)*(1+x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 14 2019
A052929
Expansion of g.f. (2-3*x-x^2)/((1-x^2)*(1-3*x)).
Original entry on oeis.org
2, 3, 10, 27, 82, 243, 730, 2187, 6562, 19683, 59050, 177147, 531442, 1594323, 4782970, 14348907, 43046722, 129140163, 387420490, 1162261467, 3486784402, 10460353203, 31381059610, 94143178827, 282429536482, 847288609443, 2541865828330, 7625597484987, 22876792454962
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
List([0..30], n-> 3^n + (1+(-1)^n)/2 ); # G. C. Greubel, Oct 17 2019
-
[&+[(-1)^k+2^k*Binomial(n,k): k in [0..n]]: n in [0..30]]; // Bruno Berselli, Aug 27 2013
-
spec:= [S, {S=Union(Sequence(Prod(Z,Z)), Sequence(Union(Z,Z,Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(3^n + (1+(-1)^n)/2, n=0..30); # G. C. Greubel, Oct 17 2019
-
Table[3^n + (1+(-1)^n)/2, {n, 0, 30}] (* Bruno Berselli, Aug 27 2013 *)
LinearRecurrence[{3, 1, -3}, {2, 3, 10}, 40] (* Vincenzo Librandi, Mar 09 2018 *)
Table[3^n + Fibonacci[n+1,0], {n,0,30}] (* G. C. Greubel, Oct 17 2019 *)
-
x='x+O('x^30); Vec((2-3*x-x^2)/((1-x^2)*(1-3*x))) \\ Altug Alkan, Mar 09 2018
-
[3^n + (1+(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Oct 17 2019
A089815
a(n) = floor((n+2)^(n+2)/((n+2)^2-1)).
Original entry on oeis.org
1, 3, 17, 130, 1333, 17157, 266305, 4842756, 101010101, 2377597255, 62350352785, 1802828015430, 56984650387477, 1954883439200265, 72340172838076673, 2872362020438669320, 121815504877079063701, 5495610154611982192011, 262801002506265664160401
Offset: 0
-
[Floor((n+2)^(n+2)/((n+2)^2-1)): n in [0..50]]; // G. C. Greubel, Oct 10 2017
-
A089815:=n->floor((n+2)^(n+2)/((n+2)^2-1)): seq(A089815(n), n=0..30); # Wesley Ivan Hurt, Apr 11 2017
-
Table[Floor[(n + 2)^(n + 2)/((n + 2)^2 - 1)], {n, 0, 50}] (* G. C. Greubel, Oct 10 2017 *)
-
for(n=0,50, print1(floor((n+2)^(n+2)/((n+2)^2-1)), ", ")) \\ G. C. Greubel, Oct 10 2017
A089816
a(n) = floor((n+3)^(n+2)/((n+3)^2-1)).
Original entry on oeis.org
1, 4, 26, 222, 2451, 33288, 538084, 10101010, 216145205, 5195862732, 138679078110, 4070332170534, 130325562613351, 4521260802379792, 168962471790509960, 6767528048726614650, 289242639716420115369
Offset: 0
-
[Floor((n+3)^(n+2)/((n+3)^2-1)): n in [0..25]]; // G. C. Greubel, Oct 11 2017
-
Table[Floor[(n + 3)^(n + 2)/((n + 3)^2 - 1)], {n, 0, 50}] (* G. C. Greubel, Oct 11 2017 *)
-
for(n=0, 25, print1(floor((n+3)^(n+2)/((n+3)^2-1)), ", ")) \\ G. C. Greubel, Oct 11 2017
Original entry on oeis.org
5, 15, 50, 150, 455, 1365, 4100, 12300, 36905, 110715, 332150, 996450, 2989355, 8968065, 26904200, 80712600, 242137805, 726413415, 2179240250, 6537720750, 19613162255, 58839486765, 176518460300, 529555380900, 1588666142705, 4765998428115, 14297995284350
Offset: 2
A001006(2) = 2, so a(2) = A340131(2) = 5.
A001006(3) = 4, so a(3) = A340131(4) = 15, etc.
A270346
a(n) is the number whose base-11 digits are, in order, the first n terms of the simple periodic sequence: repeat 2,3,5,7.
Original entry on oeis.org
2, 25, 280, 3087, 33959, 373552, 4109077, 45199854, 497198396, 5469182359, 60161005954, 661771065501, 7279481720513, 80074298925646, 880817288182111, 9688990170003228, 106578891870035510, 1172367810570390613, 12896045916274296748, 141856505079017264235
Offset: 1
a(8) = 45199854 = 23572357_11.
-
a:=[2,25,280,3087,33959];; for n in [6..30] do a[n]:=11*a[n-1]+a[n-4]-11*a[n-5]; od; a; # G. C. Greubel, Jul 14 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(2+3*x+5*x^2+7*x^3)/((1-x^4)*(1-11*x)) )); // G. C. Greubel, Jul 14 2019
-
Table[FromDigits[PadRight[{},n,{2,3,5,7}],11],{n,30}] (* or *) LinearRecurrence[{11,0,0,1,-11},{2,25,280,3087,33959},31]
-
a(n) = (-2074+305*(-1)^n+(370+410*I)*(-I)^n+(370-410*I)*I^n+1029*11^n)/4880 \\ Colin Barker, Jul 31 2016
-
Vec(x*(2+3*x+5*x^2+7*x^3)/((1-x)*(1+x)*(1-11*x)*(1+x^2)) + O(x^30)) \\ Colin Barker, Jul 31 2016
-
a=(x*(2+3*x+5*x^2+7*x^3)/((1-x^4)*(1-11*x))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 14 2019
Comments