cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A066197 Squarefree kernel of (n*prime(n))*(n+prime(n)).

Original entry on oeis.org

6, 30, 30, 154, 110, 1482, 714, 114, 138, 11310, 14322, 1554, 3198, 34314, 43710, 7314, 38114, 28914, 109478, 64610, 144102, 175538, 202354, 60342, 59170, 333502, 40170, 22470, 436218, 484770, 622046, 42706, 768570, 817598, 239890, 169422
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2001

Keywords

Examples

			For n=20 we have: A = n = 20, B = A000040(20) = 71, C = A + B = 20 + 71 = 91 and A*B*C = 129220 with squarefree kernel a(20) = 64610 = 2*5*7*13*71.
		

Programs

  • Haskell
    a066197 n = a007947 $ a033286 n * a014688 n
    -- Reinhard Zumkeller, Jul 24 2013
  • Mathematica
    sfk[n_] := Times @@ FactorInteger[n][[All, 1]];
    a[n_] := sfk[n Prime[n] (n+Prime[n])];
    Array[a, 40] (* Jean-François Alcover, Feb 04 2019 *)
  • PARI
    a(n)=my(p=prime(n),f=vecsort(concat(concat(p, factor(n)[,1]), factor(n+p)[,1]),,8)~); prod(i=1,#f,f[i]) \\ Charles R Greathouse IV, Jul 23 2013
    

Formula

a(n) = A007947(A033286(n) * A014688(n)).

A068981 Arithmetic derivative of n*prime(n).

Original entry on oeis.org

1, 5, 8, 32, 16, 71, 24, 236, 147, 213, 42, 604, 54, 401, 391, 1712, 76, 1299, 86, 1724, 751, 1049, 106, 3940, 995, 1541, 2808, 3452, 138, 3533, 158, 10512, 1951, 2675, 1823, 9096, 194, 3461, 2711, 11804, 220, 7463, 234, 9308, 7728, 5021, 258, 25024, 3227, 10355
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 01 2002

Keywords

Examples

			a(10) = A003415(A033286(10)) = A003415(A000040(10)*10) = A003415(29*10) = A003415(29)*10 + 29*A003415(10) = 1*10 + 29*(2*1 + 1*5) = 10 + 29*7 = 213.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n * Prime[n] * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n*Prime[n]]); Array[a, 100] (* Amiram Eldar, May 17 2025 *)

Formula

a(n) = n + A000040(n)*A003415(n).
a(n) = A003415(A033286(n)) = A003415(n*A000040(n)).

A079779 a(n) = smallest prime > n*prime(n).

Original entry on oeis.org

3, 7, 17, 29, 59, 79, 127, 157, 211, 293, 347, 449, 541, 607, 709, 853, 1009, 1103, 1277, 1423, 1543, 1741, 1913, 2137, 2437, 2633, 2789, 2999, 3163, 3391, 3943, 4201, 4523, 4729, 5227, 5437, 5813, 6197, 6521, 6947, 7349, 7603, 8219, 8501, 8867, 9157, 9923
Offset: 1

Views

Author

Amarnath Murthy, Feb 03 2003

Keywords

Comments

a(n) is the smallest prime > A079780(n).

Crossrefs

Programs

  • Maple
    seq(nextprime(n*ithprime(n)),n=1..40);
  • PARI
    for(n=1, 47, print1(nextprime(n*prime(n)+1), ", "))

Formula

a(n) = A151800(A033286(n)). - Michel Marcus, Aug 31 2019

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com) and Klaus Brockhaus, Feb 04 2003

A171520 Integers m that are not the product of k-th prime and k for any k >= 1.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1

Views

Author

Jaroslav Krizek, Dec 11 2009

Keywords

Comments

Complement of A033286.

Crossrefs

Cf. A033286.

Extensions

More terms from Michel Marcus, Aug 31 2019

A175897 Numbers n with property that n*prime(n)+(n+1)*prime(n+1) is a perfect square s^2.

Original entry on oeis.org

1681, 3146, 5917, 308950, 10553441, 10553550, 4273262954, 9781980985
Offset: 1

Views

Author

Zak Seidov, Oct 11 2010

Keywords

Comments

Or, numbers n with property that A033286(n)+A033286(n+1) is a perfect square s^2, A033286(n)=n*(n-th prime). [From Zak Seidov, Oct 12 2010]
a(9) > pi(4*10^12). [From Donovan Johnson, Oct 22 2010]

Examples

			{n,s}: {1681,6943},{3146,13487},{5917,26299},{308950,1647737}, {10553441,63320647},{10553550,63321299}; no more n's up to 2*10^8.
		

Programs

Extensions

a(7)-a(8) from Donovan Johnson, Oct 22 2010

A228529 a(n) = prime(n*prime(n)).

Original entry on oeis.org

3, 13, 47, 107, 257, 397, 653, 881, 1279, 1889, 2293, 3119, 3847, 4423, 5323, 6563, 7937, 8819, 10391, 11833, 12889, 14831, 16477, 18713, 21599, 23603, 25189, 27409, 29063, 31511, 37159, 39869, 43321, 45589, 50923, 53281, 57271, 61561, 65173, 69821, 74383
Offset: 1

Views

Author

Omar E. Pol, Oct 20 2013

Keywords

Examples

			For n = 2, prime(2*prime(2)) = prime(2*3) = prime(6) = 13, so a(2) = 13.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[n*Prime[n]], {n, 100}] (* T. D. Noe, Oct 22 2013 *)
  • PARI
    a(n) = prime(n*prime(n)); \\ Michel Marcus, Oct 22 2013

Formula

a(n) = A000040(A033286(n)).

A237684 a(n) = floor(n*prime(n) / Sum_{i<=n} prime(i)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jaroslav Krizek, Feb 21 2014

Keywords

Comments

a(n) = 1 for n = 8 and 1 <= n <= 6.
a(n) = 2 for n = 7 and 9 <= n < 10^11 (verified terms).
Conjectures:
(1): a(n) = 1 or 2 for all n.
(2): sequence of numbers n sorted by decreasing values of function f(n) = n*prime(n) / Sum_{i<=n} prime(i): 48, 35, 31, 25, 17, 49, 33, 69, 32, 26, 43, 38, 12, 63, 102, 67, 68, 37, ... The last term of this sequence is 1.
(3): maximal value of function f(n) is for n = 48: f(48) = 10704/4661 = 2.29650289637416...
(4): minimal value of function f(n) is for n = 1: f(1) = 1.

Examples

			a(8) = floor(8*prime(8) / Sum_{i<=8} prime(i)) = floor(8*19 / 77) = 1.
		

Crossrefs

Programs

  • Mathematica
    Block[{$MaxExtraPrecision = 1000, a, t = 0, nn = 120}, Do[(t += #; Set[a[i], Floor[i*#/t]]) &[Prime[i]], {i, nn}]; Array[a, nn] ] (* Michael De Vlieger, Mar 10 2023 *)

Formula

a(n) = floor(A033286(n) / A007504(n)).

A304194 Numbers k such that k = Product (p_j^e_j) = Product (pi(p_j)*p_j), where pi() = A000720.

Original entry on oeis.org

1, 2, 12, 56, 180, 304, 336, 936, 1696, 1824, 2484, 5040, 5328, 6664, 8384, 8512, 9900, 10176, 13176, 14040, 25632, 26208, 27360, 33372, 33712, 37260, 39808, 39984, 47488, 50304, 51072, 52200, 65232, 69552, 79920, 126900, 128448, 142272, 149184, 152640, 162648, 167776, 184064, 193752, 197640
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2018

Keywords

Comments

Numbers k such that A007947(k)*A156061(k) = k or A156061(k) = A003557(k).

Examples

			9900 is a term because 9900 = 2^2 * 3^2 * 5^2 * 11 = prime(1)^2 * prime(2)^2 * prime(3)^2 * prime(5) = 1*prime(1) * 2*prime(2) * 3*prime(3) * 5*prime(5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (PrimePi[#[[1]]] #[[1]] & /@ FactorInteger[n]); a[1] = 1; Select[Range[200000], a[#] == # &]
  • PARI
    isok(n) = {my(f=factor(n)); prod(k=1, #f~, primepi(f[k,1])*f[k,1]) == n;} \\ Michel Marcus, May 08 2018

A318367 a(n) = Sum_{d|n} (-1)^(n/d+1)*d*prime(d).

Original entry on oeis.org

2, 4, 17, 20, 57, 67, 121, 116, 224, 239, 343, 371, 535, 487, 777, 660, 1005, 958, 1275, 1095, 1669, 1401, 1911, 1715, 2482, 2097, 3005, 2295, 3163, 2987, 3939, 3156, 4879, 3727, 5391, 4502, 5811, 4925, 7063, 5271, 7341, 6619, 8215, 6433, 9849, 7249, 9919, 8691, 11244, 9264
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; add((-1)^(n/d+1)*d*ithprime(d), d = numtheory:-divisors(n)); end proc:map(f, [$1..100]); # Robert Israel, Aug 01 2023
  • Mathematica
    Table[Sum[(-1)^(n/d + 1) d Prime[d], {d, Divisors[n]}], {n, 50}]
    nmax = 50; Rest[CoefficientList[Series[Sum[k Prime[k] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 50; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^Prime[k], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d*prime(d)); \\ Michel Marcus, Aug 25 2018

Formula

G.f.: Sum_{k>=1} k*prime(k)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^prime(k)) = Sum_{n>=1} a(n)*x^n/n.

A330087 Permanent of a square matrix M(n) whose general element M_{i,j} is defined by i*prime(j).

Original entry on oeis.org

1, 2, 24, 1080, 120960, 33264000, 15567552000, 12967770816000, 15768809312256000, 29377291748732928000, 85194146071325491200000, 319563241913541917491200000, 1702632952915351336393113600000, 11797543730750469409867884134400000, 99429698562764956186366527484723200000
Offset: 0

Views

Author

Stefano Spezia, Dec 01 2019

Keywords

Comments

det(M(0)) = 1, det(M(1)) = 2 and det(M(n)) = 0 for n > 1.
The trace of the matrix M(n) is A014285(n).
The antitrace of the matrix M(n) is A014148(n).
The antidiagonal of the matrix M(n) is the n-th row of the triangle A309131.

Examples

			For n = 1 the matrix M(1) is
  2
with permanent a(1) = 2.
For n = 2 the matrix M(2) is
  2, 3
  4, 6
with permanent a(2) = 24.
For n = 3 the matrix M(3) is
  2,  3,  5
  4,  6, 10
  6,  9, 15
with permanent a(3) = 1080.
		

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i*ithprime(j)))):
    seq(a(n), n=0..14);  # Alois P. Heinz, Dec 04 2019
  • Mathematica
    M[i_, j_, n_] := i*Prime[j]; a[n_] := If[n==0,1,Permanent[Table[M[i, j, n], {i, n}, {j, n}]]]; Array[a, 14, 0]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, i*prime(j))); \\ Michel Marcus, Dec 04 2019

Extensions

a(0) = 1 prepended by Michel Marcus, Dec 04 2019
Previous Showing 31-40 of 49 results. Next