cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A092587 Numbers k such that sigma(phi(k))-phi(sigma(k)) is nonzero and divisible by phi(k), that is A065395(k)/A000010(k) is a nonzero integer.

Original entry on oeis.org

2, 18, 21, 99, 133, 151, 175, 183, 350, 366, 449, 450, 477, 532, 581, 645, 702, 843, 1072, 1253, 1346, 1508, 1645, 1833, 2085, 2097, 2150, 2421, 3668, 3950, 4223, 4312, 4453, 5264, 6601, 6853, 7128, 7423, 7622, 7713, 8325, 9028, 9364, 9707, 10820
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/phi(x) quotient equals -3 for x=450, -2 for x=18, -1 for x=2, 1 for x=21, 2 for x=99, 3 for x=4223.
		

Crossrefs

Programs

  • Mathematica
    fs[x_] := EulerPhi[DivisorSigma[1, x]] sf[x_] := DivisorSigma[1, EulerPhi[x]] {t=Table[0, {60}], j=1}; Do[s=(sf[n]-fs[n])/EulerPhi[n]; If[ !Equal[s, 0]&&IntegerQ[s], Print[n];t[[j]]=n;j=j+1], {n, 2, 1000000}] t

A132794 Numbers n such that sigma(phi(n)) -phi(n) -1 = phi(sigma(n) -n -1).

Original entry on oeis.org

8, 16, 64, 256, 16384, 262144, 1048576, 4294967296
Offset: 1

Views

Author

Keywords

Comments

Used sigma(n)-n-1, namely the sum of proper divisors minus 1.
a(8) > 10^8. - Michel Marcus, Nov 01 2014
Every 2^(A000043+1) is a term. Proof sketch: Let ch=A048050 and n=2^k, then ch(phi(2^k))=phi(ch(2^k)), ch(2^(k-1))=phi(2^k-2), 2^(k-1)-2=phi(2^(k-1)-1), since phi(prime)=prime-1 the condition is satisfied by every k=A000043+1 or n=2^(A000043+1). See link. - Jon Maiga, Dec 14 2018
Conjecture: a(n)=2^(A000043(n)+1), if true the next terms are: 4294967296, 4611686018427387904, 1237940039285380274899124224... - Jon Maiga, Dec 14 2018
a(9) > 6.5*10^11. - Giovanni Resta, Dec 01 2019

Crossrefs

Programs

  • GAP
    Filtered([4..1000000],n->Sigma(Phi(n))-Phi(n)-1=Phi(Sigma(n)-n-1)); # Muniru A Asiru, Dec 16 2018
  • Magma
    [n: n in [2..30000] | DivisorSigma(1,n) ne n+1 and DivisorSigma(1, EulerPhi(n)) - EulerPhi(n) - 1 eq EulerPhi(DivisorSigma(1,n) - n -1) ]; // G. C. Greubel, Dec 13 2018
    
  • Maple
    with(numtheory); P:=proc(n) local a,i; for i from 1 to n do
    a:=phi(sigma(i)-i-1); if a>0 then
    if sigma(phi(i))-phi(i)-1=a then print(i);
    fi; fi; od; end: P(10^7);
  • Mathematica
    ch[n_]:=DivisorSigma[1,n]-n-1
    test[n_]:=ch[n]!=0 && ch[EulerPhi[n]] == EulerPhi[ch[n]]
    Flatten[Position[Range[300000], Integer_ ? test]] (* Jon Maiga, Dec 14 2018 *)
  • PARI
    isok(n) = ((s=(sigma(n)-n-1)) != 0) && (sigma(eulerphi(n))-eulerphi(n)-1 == eulerphi(s)); \\ Michel Marcus, Nov 01 2014
    

Extensions

a(1) corrected and a(6)-a(7) from Michel Marcus, Nov 01 2014
a(8) from Giovanni Resta, Dec 01 2019

A066930 Numbers k such that phi(sigma(k)) divides sigma(phi(k)).

Original entry on oeis.org

1, 7, 9, 29, 71, 97, 109, 121, 139, 142, 175, 183, 194, 215, 225, 242, 244, 261, 278, 311, 344, 349, 355, 430, 497, 509, 516, 533, 556, 571, 605, 622, 631, 647, 673, 709, 729, 791, 817, 859, 911, 923, 1021, 1066, 1112, 1119, 1142, 1207, 1243, 1262, 1277
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2002

Keywords

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A033632 (subsequence), A062401, A062402.

Programs

  • Mathematica
    Select[Range[1300],Divisible[DivisorSigma[1,EulerPhi[#]],EulerPhi[ DivisorSigma[ 1,#]]]&] (* Harvey P. Dale, Dec 15 2021 *)
  • PARI
    isok(k) = { sigma(eulerphi(k)) % eulerphi(sigma(k)) == 0 } \\ Harry J. Smith, Apr 08 2010

A092585 Numbers k such that sigma(phi(k))-phi(sigma(k)) is nonzero and is divisible by (k-1), that is A065395(k)/(k-1) = (phi(sigma(k))-sigma(phi(k)))/(k-1) is a nonzero integer.

Original entry on oeis.org

2, 4, 16, 64, 151, 449, 3403, 4096, 4267, 9307, 35905, 65536, 247285, 262144, 17625601, 33126625, 399288961, 649232833, 947278081, 1073741824, 2102485441, 4555788385, 5203567081, 6103058177, 7115716609
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/(x-1) is -1 if x=2,4,16,64,4096,65536,262144 and is 2 if x=151,449,3403, etc.
		

Crossrefs

Programs

  • Mathematica
    f[ x_] := EulerPhi[ DivisorSigma[1, x]] - DivisorSigma[1, EulerPhi[x]]; t = {}; Do[ s = f[n]; If[ s != 0 && Mod[ s, n - 1] == 0, Print[n]; AppendTo[t, n]], {n, 2*10^8}]; t

Extensions

More terms from Robert G. Wilson v, Mar 03 2004
a(17)-a(25) from Donovan Johnson, Mar 04 2013

A227011 Integers m such that phi(sigma(k))/sigma(phi(k)) > phi(sigma(m))/sigma(phi(m)) for all k

Original entry on oeis.org

1, 3, 5, 11, 13, 17, 29, 41, 181, 209, 377, 779, 3239, 4469, 5249, 15539, 43259, 58589, 119279, 169679, 174719, 461369, 692687, 955499, 1258949, 1859129, 1917299, 3925463, 7991693, 8986469, 13244069, 16732169, 30629363, 44137523, 48466987, 64018433, 68787773
Offset: 1

Views

Author

Vladimir Letsko, Oct 09 2013

Keywords

Comments

These are the indices where the rational function A062401(n)/A062402(n) drops below the minimum set by all earlier ratios.
a(2) to a(9) are primes. However all known terms beginning from a(10) are composite.

Examples

			5 is in the sequence because phi(sigma(5))/sigma(phi(5)) = 2/7 and for all k < 5, phi(sigma(k))/sigma(phi(k)) > 2/7.
		

Crossrefs

Programs

  • Maple
    A062401 := proc(n)
        numtheory[phi](numtheory[sigma](n))
    end proc:
    A062402 := proc(n)
        numtheory[sigma](numtheory[phi](n))
    end proc:
    s := proc(n)
        A062401(n)/A062402(n) ;
    end proc:
    r := 100000000000000000000000000000 ;
    for n from 1 do
        if s(n) < r then
            printf("%d,\n",n) ;
            r := s(n) ;
        end if;
    end do:
  • PARI
    f(n)=eulerphi(sigma(n=factor(n)))/sigma(eulerphi(n))
    is(n)=my(t=f(n)); for(k=1,n-1,if(f(k)<=t, return(0))); 1 \\ Charles R Greathouse IV, Nov 27 2013

Extensions

a(33)-a(37) from Donovan Johnson, Oct 11 2013

A228567 Primes expressible as sigma(sigma(n)) - sigma(n), in order of their occurrence.

Original entry on oeis.org

3, 7, 17, 31, 31, 41, 23, 73, 127, 73, 89, 127, 463, 523, 241, 523, 157, 241, 523, 463, 211, 257, 131, 983, 379, 1153, 311, 1153, 83, 983, 521, 4339, 4339, 113, 8893, 4339, 4339, 1093, 4339, 769, 2851, 8893, 4339, 1429, 1097, 4339, 1093, 4339, 8893, 4339, 8893
Offset: 1

Views

Author

K. D. Bajpai, Nov 10 2013

Keywords

Examples

			a(9)= 127: sigma(sigma(93))-sigma(93)= 255-128= 127, which is prime.
a(11)= 89: sigma(sigma(98))-sigma(98)= 260-171= 89, which is prime.
		

Crossrefs

Cf. A000203 (sigma(n): sum of divisors of n).
Cf. A019279 (superperfect numbers: sigma(sigma(n))=2n).
Cf. A033632 (numbers n: sigma(n)is prime).
Cf. A051027 (sigma(sigma(n))).

Programs

  • Maple
    with(numtheory):KD := proc() local a; a:= sigma(sigma(n))-sigma(n);if isprime(a) then RETURN (a); fi; end: seq(KD(),n=1..5000);

A073858 Numbers k such that sigma(phi(k)) divides phi(sigma(k)).

Original entry on oeis.org

1, 2, 4, 9, 16, 18, 64, 100, 225, 242, 450, 516, 729, 1458, 3872, 4096, 4624, 13932, 14406, 17672, 18225, 20124, 21780, 28900, 29262, 29616, 36450, 45996, 62500, 65025, 65536, 76832, 92778, 95916, 106092, 106308, 114630, 114930
Offset: 1

Views

Author

Benoit Cloitre, Sep 02 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[115000],Divisible[EulerPhi[DivisorSigma[1,#]],DivisorSigma[ 1,EulerPhi[ #]]]&] (* Harvey P. Dale, Jan 31 2021 *)
  • PARI
    isok(k) = eulerphi(sigma(k)) % sigma(eulerphi(k))==0 \\ Donovan Johnson, Jul 05 2012

A092589 a(n) = -A065395(2^n).

Original entry on oeis.org

0, 1, 3, 1, 15, 5, 63, 1, 177, 89, 913, -319, 4095, 2393, 10617, 1, 65535, 8897, 262143, -44287, 729537, 543553, 4015777, -1753087, 15622785, 11162969, 46358529, -1452031, 265390977, -2270911, 1073741823, 1, 2668569153, 2862962009, 15344762817, -8238350335, 68103158337, 45811586393
Offset: 0

Views

Author

Labos Elemer, Mar 02 2004

Keywords

Crossrefs

Programs

  • Mathematica
    fs[x_] := EulerPhi[DivisorSigma[1, x]]; sf[x_] := DivisorSigma[1, EulerPhi[x]]; Table[fs[2^w]-sf[2^w], {w, 0, 65}]

Formula

a(n) = phi(2^(n+1)-1) - 2^n + 1 = A053287(n+1) - A000225(n). - Amiram Eldar, Jun 09 2024

Extensions

Offset changed to 0, a(0) prepended and name corrected by Amiram Eldar, Jun 09 2024

A226117 Numbers n such that phi(sigma(tau(n))) = tau(sigma(phi(n))).

Original entry on oeis.org

1, 3, 4, 5, 14, 17, 20, 21, 22, 26, 51, 63, 65, 66, 72, 76, 80, 84, 90, 100, 106, 112, 132, 135, 150, 152, 165, 182, 190, 196, 221, 222, 232, 246, 255, 290, 291, 292, 294, 320, 326, 375, 386, 396, 424, 450, 460, 489, 530, 561, 567, 585, 588, 600, 606, 608, 615
Offset: 1

Views

Author

Paolo P. Lava, May 27 2013

Keywords

Examples

			For n=23529 we have:
phi(23529)=13200 -> sigma(13200)=46128 -> tau(46128)=30.
tau(23529)=16 -> sigma(16)=31 -> phi(31)=30.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A226117:=proc(q) local n;
    for n from 1 to q do
    if phi(sigma(tau(n)))=tau(sigma(phi(n))) then print(n);
    fi; od; end: A226117(10^6);
  • Mathematica
    Select[Range[700],EulerPhi[DivisorSigma[1,DivisorSigma[0,#]]] == DivisorSigma[ 0,DivisorSigma[ 1,EulerPhi[ #]]]&] (* Harvey P. Dale, Dec 12 2021 *)

A226118 Numbers n such that sigma(tau(phi(n))) = phi(tau(sigma(n))).

Original entry on oeis.org

1, 2, 136, 160, 170, 204, 240, 282, 716, 745, 1002, 1077, 1465, 1509, 1578, 1868, 2012, 2157, 2346, 2720, 2760, 3608, 3898, 4101, 4461, 4512, 5066, 5322, 5898, 6189, 7080, 7185, 7341, 7628, 7660, 8108, 8517, 8665, 8698, 8709, 8805, 8922, 8940, 9234, 9745, 9962
Offset: 1

Views

Author

Paolo P. Lava, May 27 2013

Keywords

Examples

			For n=9962 we have:
sigma(9962)=15876 -> tau(15876)=45 -> phi(45)=24.
phi(9962)=4672 -> tau(4672)=14 -> sigma(14)=24.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A226118:=proc(q) local n;
    for n from 1 to q do
    if sigma(tau(phi(n)))=phi(tau(sigma(n))) then print(n);
    fi; od; end: A226118(10^6);
  • Mathematica
    Select[Range[10000],EulerPhi[DivisorSigma[0,DivisorSigma[1,#]]] == DivisorSigma[ 1, DivisorSigma[ 0, EulerPhi[#]]]&] (* Harvey P. Dale, May 26 2016 *)
Previous Showing 11-20 of 38 results. Next