cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 80 results. Next

A086411 Greatest prime factor of 3-smooth numbers.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[Do[p = FactorInteger[n][[-1, 1]]; If[p < 5, Sow[p]], {n, 1, 2*10^5}] ][[2, 1]] (* Jean-François Alcover, Dec 17 2017 *)

Formula

a(n) = A006530(A003586(n)).
A086410(n) <= a(n) <= 3.
a(A033845(n)) = A086410(A033845(n))+1; a(A006899(n)) = A086410(A006899(n)). - Reinhard Zumkeller, Sep 25 2008
Conjecture: a(n) = A049237(n+1) for n>1. - R. J. Mathar, Jun 06 2024

A147573 Numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13}.

Original entry on oeis.org

30030, 60060, 90090, 120120, 150150, 180180, 210210, 240240, 270270, 300300, 330330, 360360, 390390, 420420, 450450, 480480, 540540, 600600, 630630, 660660, 720720, 750750, 780780, 810810, 840840, 900900, 960960, 990990, 1051050, 1081080, 1171170, 1201200, 1261260
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575
Although 39270 has exactly 6 distinct prime divisors (39270=2*3*5*7*11*17), it is not in this sequence because the 6 distinct prime divisors may only comprise 2, 3, 5, 7, 11, and 13. - Harvey P. Dale, Oct 11 2014

Crossrefs

Subsequence of A067885 and of A080197.

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 192/1001, AppendTo[a, x]], {x, 1, 100000}]; a
  • PARI
    is(n)=if(n%30030, return(0)); my(g=30030); while(g>1, n/=g; g=gcd(n,30030)); n==1 \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = 30030 * A080197(n). - Charles R Greathouse IV, Sep 14 2015
Sum_{n>=1} 1/a(n) = 1/5760. - Amiram Eldar, Nov 12 2020

Extensions

More terms from Amiram Eldar, Mar 10 2020

A290002 Numbers k such that psi(phi(k)) = phi(psi(k)).

Original entry on oeis.org

1, 10, 18, 20, 36, 40, 54, 70, 72, 78, 80, 108, 110, 140, 144, 156, 160, 162, 174, 198, 216, 220, 222, 230, 234, 246, 280, 288, 294, 312, 320, 324, 348, 396, 414, 426, 432, 438, 440, 444, 450, 460, 468, 470, 486, 492, 534, 560, 576, 588, 594, 624, 640, 648, 666, 696, 702, 770, 792, 828, 846, 852
Offset: 1

Views

Author

Altug Alkan, Sep 03 2017

Keywords

Comments

Squarefree terms are 1, 10, 70, 78, 110, 174, 222, 230, 246, 426, 438, ...
Common terms of this sequence and A033632 are 1, 14406, 544500, 141118050, ...
From Robert Israel, Sep 03 2017: (Start)
Includes 2^i*3^j if i >= 1 and j >= 2, i.e., 3*A033845, and A020714(n) for n >= 1.
If an even number m is in the sequence, then so is 2*m.
Are there any odd terms other than 1? (End)
a(1) = 1 is the only odd term. LHS of equation allows for 1 and 3 but only for k <= 6. RHS allows for 1 and only for k = 1. - Torlach Rush, Jul 28 2023

Crossrefs

Programs

  • Maple
    psi:= proc(n)  n*mul((1+1/i[1]), i=ifactors(n)[2]) end:
    select(psi @ numtheory:-phi = numtheory:-phi @ psi, [$1..1000]); # Robert Israel, Sep 03 2017
  • Mathematica
    f[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@ n}]; Select[Range[10^3], f[EulerPhi@ #] == EulerPhi[f@ #] &] (* Michael De Vlieger, Sep 03 2017 *)
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    isok(n) = eulerphi(a001615(n))==a001615(eulerphi(n)); \\ after Charles R Greathouse IV at A001615

A323329 Lesser of amicable pair m < n defined by t(n) = m and t(m) = n where t(n) = psi(n) - n and psi(n) = A001615(n) is the Dedekind psi function.

Original entry on oeis.org

1330, 2660, 3850, 5320, 6650, 7700, 10640, 11270, 13300, 14950, 15400, 18550, 19250, 21280, 22540, 26600, 29900, 30800, 33250, 37100, 38500, 42560, 45080, 53200, 59800, 61600, 66500, 73370, 74200, 74750, 77000, 78890, 85120, 90160, 92750, 96250, 106400, 119600
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

t(n) = psi(n) - n is the sum of aliquot divisors of n, d, such that n/d is squarefree. Penney & Pomerance proposed a problem to show that the "pseudo-aliquot" sequence related to this function is unbounded. This sequence lists number with pseudo-aliquot sequence of cycle 2. The sequence that is analogous to perfect numbers is A033845.
The asymptotic density of the terms relative to the positive integers is zero. See Dimitrov link. - S. I. Dimitrov, Aug 06 2025

Crossrefs

Cf. A001615, A002025, A033845 (Dedekind psi perfect numbers), A323327, A323328, A323330.

Programs

  • Mathematica
    psi[n_] := n*Times@@(1+1/Transpose[FactorInteger[n]][[1]]); t[n_]:= psi[n] - n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,m]], {m, 1, 120000}]; s

A147574 Numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17}.

Original entry on oeis.org

510510, 1021020, 1531530, 2042040, 2552550, 3063060, 3573570, 4084080, 4594590, 5105100, 5615610, 6126120, 6636630, 7147140, 7657650, 8168160, 8678670, 9189180, 10210200, 10720710, 11231220, 12252240, 12762750, 13273260, 13783770
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x 510510] == 92160 x, AppendTo[a, 510510 x]], {x, 1, 100}]; a
    sdpdQ[n_]:=Module[{f=FactorInteger[n][[All,1]]},Length[f]==7&&Max[f]==17]; Select[Range[510510,138*10^5,510510],sdpdQ] (* Harvey P. Dale, Aug 03 2019 *)

Formula

a(n) = 510510 * A080681(n). - Amiram Eldar, Mar 10 2020
Sum_{n>=1} 1/a(n) = 1/92160. - Amiram Eldar, Nov 12 2020

A288162 Numbers whose prime factors are 2 and 13.

Original entry on oeis.org

26, 52, 104, 208, 338, 416, 676, 832, 1352, 1664, 2704, 3328, 4394, 5408, 6656, 8788, 10816, 13312, 17576, 21632, 26624, 35152, 43264, 53248, 57122, 70304, 86528, 106496, 114244, 140608, 173056, 212992, 228488, 281216, 346112, 425984, 456976, 562432, 692224, 742586, 851968, 913952
Offset: 1

Views

Author

Bernard Schott, Jun 06 2017

Keywords

Comments

Numbers k such that phi(k)/k = 6/13.

Crossrefs

Programs

  • Magma
    [n:n in [1..100000] | Set(PrimeDivisors(n)) eq {2,13}];  // Marius A. Burtea, May 10 2019
  • Mathematica
    Select[Range[920000],FactorInteger[#][[All,1]]=={2,13}&] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    is(n) = factor(n)[, 1]~==[2, 13] \\ Felix Fröhlich, Jun 06 2017
    
  • PARI
    list(lim)=my(v=List(),t); for(n=1,logint(lim\2,13), t=13^n; while((t<<=1)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jun 11 2017
    

Formula

a(n) = 26 * A107326(n). - David A. Corneth, Jun 06 2017
Sum_{n>=1} 1/a(n) = 1/12. - Amiram Eldar, Dec 22 2020

A323330 Larger of amicable pair m < n defined by t(n) = m and t(m) = n where t(n) = psi(n) - n and psi(n) = A001615(n) is the Dedekind psi function.

Original entry on oeis.org

1550, 3100, 4790, 6200, 7750, 9580, 12400, 12922, 15500, 15290, 19160, 20330, 23950, 24800, 25844, 31000, 30580, 38320, 38750, 40660, 47900, 49600, 51688, 62000, 61160, 76640, 77500, 82150, 81320, 76450, 95800, 90454, 99200, 103376, 101650, 119750, 124000, 122320
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The terms are ordered according to the order of their lesser counterparts (A323329).

Crossrefs

Cf. A001615, A002046, A033845 (Dedekind psi perfect numbers), A323327, A323328, A323329.

Programs

  • Mathematica
    psi[n_] := n*Times@@(1+1/Transpose[FactorInteger[n]][[1]]); t[n_]:= psi[n] - n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,n]], {m, 1, 120000}]; s

A336773 a(n) is the least prime of the form 2^j*3^k + 1, j > 0, k > 0, j + k = n. a(n) = 0 if no such prime exists.

Original entry on oeis.org

7, 13, 37, 73, 97, 193, 577, 769, 3457, 10369, 0, 12289, 629857, 839809, 147457, 995329, 1990657, 786433, 5308417, 120932353, 14155777, 28311553, 0, 113246209, 29386561537, 3439853569, 6879707137, 1811939329, 18345885697, 3221225473, 1253826625537, 0, 85691213438977
Offset: 2

Views

Author

Hugo Pfoertner, Aug 28 2020

Keywords

Crossrefs

Cf. A033845, A058383, A336772 (positions of 0).

Programs

  • Maple
    f:= proc(n) local k,p;
       for k from 1 to n-1 do
         p:= 2^(n-k)*3^k+1;
         if isprime(p) then return p fi
       od;
       0
    end proc:
    map(f, [$2..40]); # Robert Israel, Aug 30 2020
  • PARI
    for(n=2,34, my(pm=oo); for(j=1,n-1, my(k=n-j,p=2^j*3^k+1);if(isprime(p),pm=min(p,pm))); print1(if(pm==oo,0,pm),", "))

A382248 Smallest number k that is neither squarefree nor a prime power such that k is coprime to n.

Original entry on oeis.org

12, 45, 20, 45, 12, 175, 12, 45, 20, 63, 12, 175, 12, 45, 28, 45, 12, 175, 12, 63, 20, 45, 12, 175, 12, 45, 20, 45, 12, 539, 12, 45, 20, 45, 12, 175, 12, 45, 20, 63, 12, 275, 12, 45, 28, 45, 12, 175, 12, 63, 20, 45, 12, 175, 12, 45, 20, 45, 12, 539, 12, 45, 20
Offset: 1

Views

Author

Michael De Vlieger, Mar 31 2025

Keywords

Comments

Let p be the smallest prime that is coprime to n and let q be the second smallest prime that is coprime to n. Then a(n) = p^2 * q.
Records in this sequence are set by n in A002110.

Examples

			a(1) = 12 = 2^2*3, since p = 2, q = 3.
a(2) = 45 = 3^2*5, since p = 3, q = 5.
a(3) = 20 = 2^2*5, since p = 2, q = 5.
a(4) = 45 = 3^2*5, since p = 3, q = 5, a(2^i) = 45 for i > 0.
a(6) = 175 = 5^2*7, since p = 5, q = 7.
a(9) = 20 = 2^2*5, since p = 2, q = 5, a(3^i) = 20 for i > 0.
a(10) = 63 = 3^2*7, since p = 3, q = 7.
a(12) = 175 = 5^2*7, since p = 5, q = 7, a(k) = 175 for n in A033845 (i.e., n such that rad(n) = 6).
a(20) = 63 = 3^2*7, since p = 3, q = 7, a(k) = 63 for n in A033846 (i.e., n such that rad(n) = 10).
a(30) = 539 = 7^2*11, since p = 7, q = 11, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[c = 0; q = 2; Times @@ Reap[While[c < 2, While[Divisible[n, q], q = NextPrime[q]]; Sow[q^(2 - c)]; q = NextPrime[q]; c++] ][[-1, 1]], {n, 120}]
  • PARI
    a(n) = my(k=2); while (isprimepower(k) || issquarefree(k) || (gcd(k, n) != 1) , k++); k; \\ Michel Marcus, Apr 01 2025

Formula

a(n) = A053669(n)^2 * A380539(n).
For k and m such that rad(k) = rad(m), a(k) = a(m), where rad = A007947.

A000423 a(n) is smallest number > a(n-1) of form a(i)*a(j), i < j < n.

Original entry on oeis.org

2, 3, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Sequence contains 2, 3 and all numbers of form 2^a*3^b where a >= 1 and b >= 1. - David W. Wilson, Aug 15 1996
Main entry for this sequence is A033845, which is this sequence starting at 6. - Charles R Greathouse IV, Feb 27 2012

References

  • Amarnath Murthy, The sum of the reciprocals of the Smarandache multiplicative sequence, (to be published in Smarandache Notions Journal).
  • F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ
  • M. Myers, Smarandache Multiplicative Numbers, in Memorables 1998, Bristol Banner Books, Bristol, p. 37, 1998.

Crossrefs

Subsequence of A003586 (3-smooth numbers).
A007335 and A033845 are subsequences.

Programs

  • Mathematica
    a[1] = 2; a[2] = 3; a[n_] := a[n] = For[k = a[n - 1] + 1, True, k++, If[ AnyTrue[Table[a[i] a[j], {i, 1, n-2}, {j, i+1, n-1}] // Flatten, # == k& ], Return[k]]]; Table[an = a[n]; Print[an]; an, {n, 1, 50}] (* Jean-François Alcover, Feb 08 2016 *)

Formula

Sum_{n>=1} 1/a(n) = 4/3. - Amiram Eldar, Jul 31 2022

Extensions

More terms from David W. Wilson, Aug 15 1996
Previous Showing 31-40 of 80 results. Next