cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 200 results. Next

A336041 Number of refactorable divisors of n.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 2, 2, 3, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 2, 1, 2, 1, 5, 2, 2, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 07 2020

Keywords

Comments

Inverse Möbius transform of A336040. - Antti Karttunen, Nov 24 2021

Examples

			a(6) = 2; The divisors of 6 are {1,2,3,6}. Only two of these divisors are refactorable since d(1) = 1|1 and d(2) = 2|2, but d(3) = 2 does not divide 3 and d(6) = 4 does not divide 6.
a(7) = 1; The divisors of 7 are {1,7} and d(1) = 1|1, but d(7) = 2 does not divide 7, so a(7) = 1.
a(8) = 3; The divisors of 8 are {1,2,4,8}. 1, 2 and 8 are refactorable since d(1) = 1|1, d(2) = 2|2 and d(8) = 4|8 but d(4) = 3 does not divide 4, so a(8) = 3.
a(9) = 2; The divisors of 9 are {1,3,9}. 1 and 9 are refactorable since d(1) = 1|1 and d(9) = 3|9 but d(3) = 2 does not divide 3. Thus, a(9) = 2.
		

Crossrefs

Cf. A000005 (tau), A033950 (refactorable numbers), A336040 (refactorable characteristic), A349658 (number of nonrefactorable divisors).
Cf. also A335182, A335665.

Programs

  • Maple
    A336041 := proc(n)
        local a ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if type(d/numtheory[tau](d),integer) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A336041(n),n=1..30) ; # R. J. Mathar, Nov 24 2020
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Divisible[#, DivisorSigma[0, #]] &]; Array[a, 100] (* Amiram Eldar, Jul 08 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d%numdiv(d) == 0); \\ Michel Marcus, Jul 07 2020

Formula

a(n) = Sum_{d|n} c(d), where c(n) is the refactorable characteristic of n (A336040).
a(n) = Sum_{d|n} (1 - ceiling(d/tau(d)) + floor(d/tau(d))), where tau(n) is the number of divisors of n (A000005).
a(n) = A000005(n) - A349658(n). - Antti Karttunen, Nov 24 2021
a(p) = 1 for odd primes p. - Wesley Ivan Hurt, Nov 28 2021

A009230 a(n) = lcm(n, d(n)).

Original entry on oeis.org

1, 2, 6, 12, 10, 12, 14, 8, 9, 20, 22, 12, 26, 28, 60, 80, 34, 18, 38, 60, 84, 44, 46, 24, 75, 52, 108, 84, 58, 120, 62, 96, 132, 68, 140, 36, 74, 76, 156, 40, 82, 168, 86, 132, 90, 92, 94, 240, 147, 150, 204, 156, 106, 216, 220, 56, 228, 116, 118, 60, 122, 124, 126, 448
Offset: 1

Views

Author

Keywords

Comments

Fixed points of this sequence are the refactorable numbers (A033950), i.e. a(A033950(n)) = A033950(n). - Labos Elemer, Nov 18 2002

Crossrefs

Programs

  • Maple
    a:= n-> ilcm(n, numtheory[tau](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 14 2017
  • Mathematica
    Table[LCM[n,DivisorSigma[0,n]],{n,70}] (* Harvey P. Dale, Jul 31 2016 *)

A281188 Number of refactorable numbers m such that tau(m) = n, or 0 if there are infinitely many such numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 6, 1, 0, 2, 2, 2, 0, 1, 2, 2, 0, 1, 6, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 6, 1, 0, 2, 6, 1, 0, 1, 2, 0, 0, 2, 6, 1, 0, 0, 2, 1, 0, 2, 2, 2, 0, 1, 0, 2, 0, 2, 2, 2, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

An integer n is a refactorable number if and only if tau(n) (A000005) divides n.
Every number is tau(m) for some refactorable m.
If n is squarefree with k prime divisors, then a(n) = k! (for a proof, see the Links entry from the author).
Conjecture: a(n) is nonzero if and only if n is squarefree or n = 4. [This conjecture is true; see Links for a proof. - Jon E. Schoenfield and Altug Alkan, Jan 17 2017]
See also Theorem 5 for the proof of conjecture in Colton link. - Altug Alkan, Jan 20 2017

Examples

			If n is prime, the only refactorable number m with tau(m) = n is n^(n-1), so a(n) = 1 for n prime.
Any number n of the form 8p, p a prime not equal to 2, has tau(n) = 8, and thus n is refactorable. Hence a(8) = 0.
		

Crossrefs

Programs

Extensions

More terms from Altug Alkan, Jan 17 2017

A057532 n is odd and sum of digits of n equals the numbers of divisors of n.

Original entry on oeis.org

1, 11, 101, 225, 301, 441, 525, 1003, 1111, 1425, 1521, 1575, 1911, 2015, 2101, 2325, 2475, 2541, 2601, 2925, 3225, 3311, 3825, 4275, 4301, 4851, 5025, 5175, 5445, 5733, 5775, 6075, 6321, 6525, 7315, 7605, 7623, 8325, 8925, 9225, 9555, 10003, 10021
Offset: 1

Views

Author

Asher Auel, Sep 03 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^4, 2], Plus @@ IntegerDigits[#] == DivisorSigma[0, #] &] (* Giovanni Resta, Apr 24 2017 *)

A245782 Refactorable multiply-perfect numbers.

Original entry on oeis.org

1, 672, 30240, 23569920, 45532800, 14182439040, 153003540480, 403031236608, 518666803200, 13661860101120, 740344994887680, 796928461056000, 212517062615531520, 87934476737668055040, 154345556085770649600, 170206605192656148480, 1161492388333469337600, 1802582780370364661760
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Multiply-perfect numbers k (A007691) such that k / tau(k) is an integer.
Also multiply-perfect numbers k (A007691) such that (k / tau(k) - sigma(k) / k) = (k / A000005(k) - A000203(k) / k) is an integer.
Also multiply-perfect numbers k (A007691) such that (k / tau(k) + sigma(k) / k) = (k / A000005(k) + A000203(k) / k) is an integer.

Examples

			Multiply-perfect number 672 is in sequence because 672 / tau(672) = 28 (integer).
		

Crossrefs

Intersection of A033950 (refactorable numbers) and A007691 (multiply-perfect numbers).
Subsequence of A245778 and A245786.
Supersequence of A047728.

Programs

  • Magma
    [n:n in [A007691(n)] | (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) eq 1];
    
  • Mathematica
    q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n, d]]; Select[Range[31000], q] (* Amiram Eldar, May 09 2024 *)
  • PARI
    isok(n) = !(n % numdiv(n)) && !(sigma(n) % n); \\ Michel Marcus, Aug 11 2014
    
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !(k % d);} \\ Amiram Eldar, May 09 2024

Extensions

a(14)-a(18) from Amiram Eldar, May 09 2024

A335182 Sum of the refactorable divisors of n.

Original entry on oeis.org

1, 3, 1, 3, 1, 3, 1, 11, 10, 3, 1, 15, 1, 3, 1, 11, 1, 30, 1, 3, 1, 3, 1, 47, 1, 3, 10, 3, 1, 3, 1, 11, 1, 3, 1, 78, 1, 3, 1, 51, 1, 3, 1, 3, 10, 3, 1, 47, 1, 3, 1, 3, 1, 30, 1, 67, 1, 3, 1, 75, 1, 3, 10, 11, 1, 3, 1, 3, 1, 3, 1, 182, 1, 3, 1, 3, 1, 3, 1, 131, 10, 3, 1, 99
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 17 2020

Keywords

Comments

Inverse Möbius transform of n * c(n), where c(n) is the characteristic function of refactorable numbers (A336040). - Wesley Ivan Hurt, Jun 21 2024

Examples

			a(6) = 3; The divisors of 6 are {1,2,3,6}. 1 and 2 are refactorable since d(1) = 1|1 and d(2) = 2|2, so a(6) = 1 + 2 = 3.
a(7) = 1; The divisors of 7 are {1,7} and 1 is the only refactorable divisor of 7. So a(7) = 1.
a(8) = 11; The divisors of 8 are {1,2,4,8}. 1, 2 and 8 are refactorable since d(1) = 1|1, d(2) = 2|2 and d(8) = 4|8, so a(8) = 1 + 2 + 8 = 11.
a(9) = 10; The divisors of 9 are {1,3,9}. 1 and 9 are refactorable since d(1) = 1|1 and d(9) = 3|9, so a(9) = 1 + 9 = 10.
		

Crossrefs

Cf. A000005 (tau), A033950 (refactorable numbers), A336040 (refactorable characteristic), A336041 (number of refactorable divisors), A335665 (their product).
Difference of A349322 and A349658.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Divisible[#, DivisorSigma[0, #]] &]; Array[a, 80] (* Amiram Eldar, Nov 24 2021 *)
  • PARI
    isr(n) = n%numdiv(n)==0; \\ A033950
    a(n) = sumdiv(n, d, if (isr(d), d)); \\ Michel Marcus, Jul 20 2020

Formula

a(n) = Sum_{d|n} d * c(d), where c = A336040.
a(n) = Sum_{d|n} d * (1 - ceiling(d/tau(d)) + floor(d/tau(d))), where tau(n) is the number of divisors of n (A000005).
a(n) = A349322(n) - A349658(n). - Antti Karttunen, Nov 24 2021
a(p) = 1 for odd primes p. - Wesley Ivan Hurt, Nov 28 2021

A336064 Numbers divisible by the maximal exponent in their prime factorization (A051903).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

The asymptotic density of this sequence is A336065 = 0.848957... (Schinzel and Šalát, 1994).

Examples

			4 = 2^2 is a term since A051903(4) = 2 is a divisor of 4.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

A005117 (except for 1) is subsequence.

Programs

  • Mathematica
    H[1] = 0; H[n_] := Max[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, H[#]] &]
  • PARI
    isok(m) = if (m>1, (m % vecmax(factor(m)[,2])) == 0); \\ Michel Marcus, Jul 08 2020

A046754 Numbers k such that the square of d(k) (number of divisors) divides k.

Original entry on oeis.org

1, 9, 128, 625, 972, 1152, 2000, 2025, 5625, 6561, 7776, 8100, 10000, 10800, 18000, 21952, 26244, 30000, 32768, 35721, 50625, 55296, 56700, 64000, 64800, 65856, 70000, 80000, 84672, 89100, 90000, 97200, 98304, 99225, 105300, 109760, 110000
Offset: 1

Views

Author

Keywords

Comments

Subset of A033950.

Examples

			If k = 972, d(k) = sigma(0,k) = 18. Its square is 324 which divides 972.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[110000], IntegerQ[#/DivisorSigma[0, #]^2] &] (* Jayanta Basu, Jun 28 2013 *)

A272872 Numbers k such that k+1 is divisible by number of divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 29, 31, 35, 37, 39, 41, 43, 47, 51, 53, 55, 59, 61, 67, 71, 73, 79, 83, 87, 89, 91, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 123, 127, 131, 135, 137, 139, 143, 149, 151, 155, 157, 159, 163, 167
Offset: 1

Views

Author

Altug Alkan, May 11 2016

Keywords

Comments

Inspired by A272353.
All odd primes are obvious members.
Numbers k such that k == -1 (mod A000005(k)). Nonprime terms are listed in A354714. - Max Alekseyev, Jun 04 2022
63 is the least number that is not in this sequence but is a member of A187929.

Examples

			15 is a term because A000005(15) = 4 divides 15+1 = 16.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@167, Mod[#+1, DivisorSigma[0, #]] == 0 &] (* Giovanni Resta, May 21 2016 *)
  • PARI
    lista(nn) = {for(n=1, nn, if((n+1) % numdiv(n) == 0, print1(n, ", ")));}

A335665 Product of the refactorable divisors of n.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 16, 9, 2, 1, 24, 1, 2, 1, 16, 1, 324, 1, 2, 1, 2, 1, 4608, 1, 2, 9, 2, 1, 2, 1, 16, 1, 2, 1, 139968, 1, 2, 1, 640, 1, 2, 1, 2, 9, 2, 1, 4608, 1, 2, 1, 2, 1, 324, 1, 896, 1, 2, 1, 1440, 1, 2, 9, 16, 1, 2, 1, 2, 1, 2, 1, 1934917632, 1, 2, 1, 2, 1, 2, 1, 51200
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 17 2020

Keywords

Examples

			a(6) = 2; The divisors of 6 are {1,2,3,6}. 1 and 2 are refactorable since d(1) = 1|1 and d(2) = 2|2, so a(6) = 1 * 2 = 2.
a(7) = 1; The divisors of 7 are {1,7} and 1 is the only refactorable divisor of 7. So a(7) = 1.
a(8) = 16; The divisors of 8 are {1,2,4,8}. 1, 2 and 8 are refactorable since d(1) = 1|1, d(2) = 2|2 and d(8) = 4|8, so a(8) = 1 * 2 * 8 = 16.
a(9) = 9; The divisors of 9 are {1,3,9}. 1 and 9 are refactorable since d(1) = 1|1 and d(9) = 3|9, so a(9) = 1 * 9 = 9.
		

Crossrefs

Cf. A000005 (tau), A033950 (refactorable numbers), A336040 (refactorable characteristic), A336041 (number of refactorable divisors), A335182 (their sum).
Cf. also A349322 (similar formula, but with sum instead of product).

Programs

  • Mathematica
    a[n_] := Product[If[Divisible[d, DivisorSigma[0, d]], d, 1], {d, Divisors[n]}]; Array[a, 60] (* Amiram Eldar, Nov 24 2021 *)
  • PARI
    isr(n) = n%numdiv(n)==0; \\ A033950
    a(n) = my(d=divisors(n)); prod(k=1, #d, if (isr(d[k]), d[k], 1)); \\ Michel Marcus, Jul 18 2020

Formula

a(n) = Product_{d|n} d^c(d), where c(n) is the refactorable characteristic of n (A336040).
a(n) = Product_{d|n} d^(1 - ceiling(d/tau(d)) + floor(d/tau(d))), where tau(n) is the number of divisors of n (A000005).
a(p) = 1 for odd primes p. - Wesley Ivan Hurt, Nov 28 2021
Previous Showing 41-50 of 200 results. Next