cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A107693 Primes with digital product = 7.

Original entry on oeis.org

7, 17, 71, 1117, 1171, 11117, 11171, 1111711, 1117111, 1171111, 11111117, 11111171, 71111111, 1117111111, 1711111111, 17111111111, 1111171111111, 11111111111111171, 11111111171111111, 1111111111111111171, 1111171111111111111, 1111711111111111111
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, May 20 2005

Keywords

Comments

Subsequence of A034054. - Michel Marcus, Jul 27 2016
From Bernard Schott, Jul 12 2021: (Start)
This sequence was the subject of the 1st problem, submitted by USSR, during the 31st International Mathematical Olympiad in 1990 at Beijing, but the jury decided not to use it in the competition.
Problem was: Consider the m-digit numbers consisting of one '7' and m-1 '1'. For what values of m are all these numbers prime? (see the reference).
Answer is: only for m = 1 and m = 2, all these m-digit numbers are primes, so, a(1) = 7, then a(2) = 17 and a(3) = 71.
For other results, see A346274. (End)

Examples

			1117 and 1171 are primes, but 1711 = 29 * 59 and 7111 = 13 * 547; hence a(4) = 1117 and a(5) = 1171.
		

References

  • Derek Holton, A Second Step to Mathematical Olympiad Problems, Vol. 7, Mathematical Olympiad Series, World Scientific, 2011, & 8.2. USS 1 p. 260 and & 8.14 Solutions pp 284-287.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^8) | &*Intseq(p) eq 7]; // Vincenzo Librandi, Jul 27 2016
    
  • Mathematica
    Flatten[ Table[ Select[ Sort[ FromDigits /@ Permutations[ Flatten[{7, Table[1, {n}]}]]], PrimeQ[ # ] &], {n, 0, 20}]]
    Select[Prime[Range[3 10^6]], Times@@IntegerDigits[#] == 7 &] (* Vincenzo Librandi, Jul 27 2016 *)
    Sort[Flatten[Table[Select[FromDigits/@Permutations[PadRight[{7},n,1]],PrimeQ],{n,20}]]] (* Harvey P. Dale, Aug 19 2021 *)
  • Python
    from sympy import isprime
    def auptod(maxdigits):
        alst = []
        for d in range(1, maxdigits+1):
            if d%3 == 0: continue
            for i in range(d):
                t = int('1'*(d-1-i) + '7' + '1'*i)
                if isprime(t): alst.append(t)
        return alst
    print(auptod(20))  # Michael S. Branicky, Jul 12 2021

Extensions

a(21) and beyond from Michael S. Branicky, Jul 12 2021

A034056 Numbers with multiplicative digital root value 9.

Original entry on oeis.org

9, 19, 33, 91, 119, 133, 191, 313, 331, 911, 1119, 1133, 1191, 1313, 1331, 1911, 3113, 3131, 3311, 9111, 11119, 11133, 11191, 11313, 11331, 11911, 13113, 13131, 13311, 19111, 31113, 31131, 31311, 33111, 91111, 111119, 111133, 111191, 111313, 111331
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Numbers with one 9 or two 3s, and zero or more 1s. - Daniel Forgues, Oct 09 2011

Crossrefs

Cf. A031347.
Cf. A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 0-9).

Programs

  • Mathematica
    Module[{nn=6,ne,te},ne=Union[FromDigits/@Flatten[Permutations/@Table[PadRight[{9},n,1],{n,nn}],1]];te=Rest[Union[FromDigits/@ Flatten[ Permutations/@Table[PadRight[{3,3},n,1],{n,nn}],1]]];Join[ne,te]]//Sort (* Harvey P. Dale, Apr 14 2025 *)

Formula

There are n(n+1)(n+2)/6 elements up to 10^n, so a(n) is about 10^sqrt(6n).

A276039 Numbers using only digits 1 and 7.

Original entry on oeis.org

1, 7, 11, 17, 71, 77, 111, 117, 171, 177, 711, 717, 771, 777, 1111, 1117, 1171, 1177, 1711, 1717, 1771, 1777, 7111, 7117, 7171, 7177, 7711, 7717, 7771, 7777, 11111, 11117, 11171, 11177, 11711, 11717, 11771, 11777, 17111, 17117, 17171, 17177, 17711, 17717, 17771, 17777
Offset: 1

Views

Author

Vincenzo Librandi, Aug 19 2016

Keywords

Comments

Numbers k such that the product of digits of k is a power of 7.
There are no prime terms whose number of digits is divisible by 3: for every d that is a multiple of 3, every d-digit number j consisting of no digits other than 1's and 7's will have a digit sum divisible by 3, so j will also be divisible by 3. - Mikk Heidemaa, Mar 27 2021

Examples

			7717 is in the sequence because 7*7*1*7 = 343 = 7^3.
		

Crossrefs

Cf. similar sequences listed in A276037.

Programs

  • Magma
    [n: n in [1..24000] | Set(Intseq(n)) subset {1,7}];
    
  • Mathematica
    Select[Range[20000], IntegerQ[Log[7, Times@@(IntegerDigits[#])]] &] (* or *) Flatten[Table[FromDigits/@Tuples[{1, 7}, n], {n, 6}]]
  • PARI
    is(n) = my(d=digits(n), e=[0, 2, 3, 4, 5, 6, 8, 9]); if(#setintersect(Set(d), Set(e))==0, return(1), return(0)) \\ Felix Fröhlich, Aug 19 2016
    
  • PARI
    a(n) = { my(b = binary(n + 1)); b = b[^1]; b = apply(x -> 6*x + 1, b); fromdigits(b) } \\ David A. Corneth, Mar 27 2021
    
  • Python
    def a(n):
      b = bin(n+1)[3:]
      return int("".join(b.replace("1", "7").replace("0", "1")))
    print([a(n) for n in range(1, 47)]) # Michael S. Branicky, Mar 27 2021
    
  • Python
    def A276039(n): return 6*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025

A277061 Numbers with multiplicative digital root > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 115
Offset: 1

Views

Author

J. Lowell, Sep 26 2016

Keywords

Comments

Question: when will numbers not in this sequence outnumber numbers in this sequence? Up to n = 1249, there are 524 terms, so 525 terms not in this sequence. Up to n = 1522, there are n/2 terms. No n > 1522 has that property. Up to 10^10, only about 1.46% of numbers are a term.
To find how many terms there are up to 10^n, see if A009994(i) is for 2 <= i <= binomial(n + 9, 9). If it is then that adds A047726(A009994(i)) to the total (we don't have to worry about digits 0 in A009994(i) as there aren't any for the specified i). One may put further constraints on i. For example, A009994(i) can't contain an even digit and a 5 in the same number. - David A. Corneth, Sep 27 2016

Examples

			25 is not in this sequence because 2*5 = 10 and 1*0 = 0.
		

Crossrefs

Cf. A031347, A034048 (complement).
Cf. A028843 (a subsequence).
Union of A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 1-9).
Cf. A052382 (a supersequence).

Programs

  • Mathematica
    Select[Range@ 112, FixedPoint[Times @@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    is(n) = n=digits(n); while(#n>1,n=digits(prod(i=1,#n,n[i]))); #n>0 \\ David A. Corneth, Sep 27 2016

Extensions

More terms from Michael De Vlieger, Sep 26 2016

A201021 Composite numbers whose multiplicative digital root is 7.

Original entry on oeis.org

117, 171, 711, 1711, 7111, 11711, 17111, 71111, 111117, 111171, 111711, 117111, 171111, 711111, 1111117, 1111171, 1711111, 7111111, 11111711, 11117111, 11171111, 11711111, 17111111, 111111117, 111111171, 111111711, 111117111, 111171111, 111711111, 117111111, 171111111
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Also composite numbers whose product of digits is 7.
Complement of A107693 with respect to A034054. ~

Crossrefs

Cf. A107693 (primes whose multiplicative digital root is 7), A034054 (numbers whose multiplicative digital root is 7).

Programs

  • Mathematica
    Flatten[Table[Select[FromDigits/@Permutations[PadRight[{7},n,1]],CompositeQ],{n,9}]]//Sort (* Harvey P. Dale, Mar 29 2023 *)

Formula

Number 171 is in sequence because 1*7*1=7.
Previous Showing 11-15 of 15 results.