A221524 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by 2 or more.
0, 0, 0, 0, 2, 0, 0, 6, 2, 0, 0, 12, 10, 4, 0, 0, 20, 30, 36, 6, 0, 0, 30, 68, 144, 94, 10, 0, 0, 42, 130, 400, 536, 274, 16, 0, 0, 56, 222, 900, 1940, 2172, 768, 26, 0, 0, 72, 350, 1764, 5368, 9982, 8544, 2182, 42, 0, 0, 90, 520, 3136, 12458, 33380, 50400, 33960, 6170, 68, 0, 0
Offset: 1
Examples
Some solutions for n=6 k=4 ..1....0....4....4....3....3....0....4....2....0....4....0....0....1....3....0 ..3....3....0....0....0....1....2....0....4....3....2....4....2....3....1....3 ..4....0....3....2....4....1....4....2....4....1....4....1....3....0....2....0 ..1....0....4....4....1....4....2....3....2....2....2....1....0....0....4....4 ..4....4....2....1....0....3....1....0....4....4....4....4....0....2....1....3 ..2....1....4....4....2....1....4....3....0....2....2....2....3....4....3....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1518
Formula
Empirical for column k:
k=2: a(n) = a(n-1) +a(n-2)
k=3: a(n) = a(n-1) +4*a(n-2) +3*a(n-3) +a(n-4)
k=4: a(n) = 2*a(n-1) +6*a(n-2) +6*a(n-3) +4*a(n-4) +4*a(n-6)
k=5: a(n) = 2*a(n-1) +11*a(n-2) +20*a(n-3) +17*a(n-4) -3*a(n-5) +a(n-6)
k=6: a(n) = 3*a(n-1) +14*a(n-2) +29*a(n-3) +28*a(n-4) +a(n-5) +27*a(n-6) +8*a(n-7) +2*a(n-8)
k=7: a(n) = 3*a(n-1) +21*a(n-2) +58*a(n-3) +79*a(n-4) +32*a(n-5) +23*a(n-6) +4*a(n-7) +8*a(n-8)
Empirical for row n:
n=2: a(n) = n^2 - n
n=3: a(n) = n^3 - 3*n^2 + 4*n - 2
n=4: a(n) = n^4 - 2*n^3 + n^2
n=5: a(n) = n^5 - n^4 - 10*n^3 + 38*n^2 - 60*n + 40 for n>2
n=6: a(n) = n^6 - 20*n^4 + 83*n^3 - 182*n^2 + 236*n - 148 for n>3
n=7: a(n) = n^7 + n^6 - 29*n^5 + 109*n^4 - 204*n^3 + 202*n^2 - 80*n for n>2
Comments