A374517
Number of integer compositions of n whose leaders of anti-runs are identical.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 25, 46, 85, 160, 301, 561, 1056, 1984, 3730, 7037, 13273, 25056, 47382, 89666, 169833, 322038, 611128, 1160660, 2206219, 4196730, 7988731, 15217557, 29005987, 55321015, 105570219, 201569648, 385059094, 735929616, 1407145439, 2691681402
Offset: 0
The a(0) = 1 through a(5) = 13 compositions:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(1111) (131)
(212)
(221)
(1112)
(1121)
(1211)
(11111)
These compositions have ranks
A374519.
The complement is counted by
A374640.
Other types of runs (instead of anti-):
- For leaders of identical runs we have
A000005 for n > 0, ranks
A272919.
- For leaders of weakly increasing runs we have
A374631, ranks
A374633.
- For leaders of strictly increasing runs we have
A374686, ranks
A374685.
- For leaders of weakly decreasing runs we have
A374742, ranks
A374741.
- For leaders of strictly decreasing runs we have
A374760, ranks
A374759.
Other types of run-leaders (instead of identical):
- For distinct leaders we have
A374518.
- For weakly increasing leaders we have
A374681.
- For strictly increasing leaders we have
A374679.
- For weakly decreasing leaders we have
A374682.
- For strictly decreasing leaders we have
A374680.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]
-
C_x(N) = {my(g =1/(1 - sum(k=1, N, x^k/(1+x^k))));g}
A_x(i,N) = {my(x='x+O('x^N), f=(x^i)*(C_x(N)*(x^i)+x^i+1)/(1+x^i)^2);f}
B_x(i,j,N) = {my(x='x+O('x^N), f=C_x(N)*x^(i+j)/((1+x^i)*(1+x^j)));f}
D_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,-1+sum(j=0,N-i, A_x(i,N)^j)*(1-B_x(i,i,N)+sum(k=1,N-i,B_x(i,k,N)))));Vec(f)}
D_x(30) \\ John Tyler Rascoe, Aug 16 2024
A350842
Number of integer partitions of n with no difference -2.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (211) (41) (51) (52)
(1111) (221) (222) (61)
(2111) (321) (322)
(11111) (411) (511)
(2211) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(211111)
(1111111)
Heinz number rankings are in parentheses below.
The version for no difference 0 is
A000009.
The version for subsets of prescribed maximum is
A005314.
A027187 = partitions of even length.
Cf.
A000070,
A000929,
A001511,
A003242,
A007359,
A018819,
A040039,
A045690,
A045691,
A101417,
A154402,
A323093.
-
Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]
A342191
Numbers with no adjacent prime indices having quotient < 1/2.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 42, 43, 45, 47, 48, 49, 53, 54, 55, 59, 60, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 84, 89, 90, 91, 96, 97, 101, 103, 105, 107, 108, 109
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 18: {1,2,2} 42: {1,2,4}
2: {1} 19: {8} 43: {14}
3: {2} 21: {2,4} 45: {2,2,3}
4: {1,1} 23: {9} 47: {15}
5: {3} 24: {1,1,1,2} 48: {1,1,1,1,2}
6: {1,2} 25: {3,3} 49: {4,4}
7: {4} 27: {2,2,2} 53: {16}
8: {1,1,1} 29: {10} 54: {1,2,2,2}
9: {2,2} 30: {1,2,3} 55: {3,5}
11: {5} 31: {11} 59: {17}
12: {1,1,2} 32: {1,1,1,1,1} 60: {1,1,2,3}
13: {6} 35: {3,4} 61: {18}
15: {2,3} 36: {1,1,2,2} 63: {2,2,4}
16: {1,1,1,1} 37: {12} 64: {1,1,1,1,1,1}
17: {7} 41: {13} 65: {3,6}
The multiplicative version (squared instead of doubled) for prime factors is
A253784.
These are the Heinz numbers of the partitions counted by
A342094.
A003114 counts partitions with adjacent parts differing by more than 1.
A034296 counts partitions with adjacent parts differing by at most 1.
Cf.
A000929,
A003242,
A056239,
A056924,
A112798,
A154402,
A167606,
A337135,
A342085,
A342096,
A342098.
A107428
Number of gap-free compositions of n.
Original entry on oeis.org
1, 2, 4, 6, 11, 21, 39, 71, 141, 276, 542, 1070, 2110, 4189, 8351, 16618, 33134, 66129, 131937, 263483, 526453, 1051984, 2102582, 4203177, 8403116, 16800894, 33593742, 67174863, 134328816, 268624026, 537192064, 1074288649, 2148414285, 4296543181, 8592585289
Offset: 1
From _Gus Wiseman_, Oct 04 2022: (Start)
The a(0) = 1 through a(5) = 11 gap-free compositions:
() (1) (2) (3) (4) (5)
(11) (12) (22) (23)
(21) (112) (32)
(111) (121) (122)
(211) (212)
(1111) (221)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
These compositions are ranked by
A356841.
A356233 counts factorizations into gapless numbers.
-
b:= proc(n, i, t) option remember; `if`(n=0, t!,
`if`(i<1 or n add(b(n, i, 0), i=1..n):
seq(a(n), n=1..40); # Alois P. Heinz, Apr 14 2014
-
Table[Length[Select[Level[Map[Permutations,IntegerPartitions[n]],{2}],Length[Union[#]]==Max[#]-Min[#]+1&]],{n,1,20}] (* Geoffrey Critzer, Apr 13 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1, t + j]/j!, {j, 1, n/i}]]]; a[n_] := Sum[b[n, i, 0], {i, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
A325160
Products of distinct, non-consecutive primes. Squarefree numbers not divisible by any two consecutive primes.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 110, 111, 113, 115, 118, 119
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
34: {1,7}
37: {12}
Cf.
A001227,
A003114,
A005117,
A025157,
A034296,
A056239,
A073485,
A073491,
A089995,
A112798,
A116931,
A319630,
A325161,
A325162.
-
Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&]
-
isok(k) = {if (issquarefree(k), my(v = apply(primepi, factor(k)[,1])); ! #select(x->(v[x+1]-v[x] == 1), [1..#v-1]));} \\ Michel Marcus, Jan 09 2021
A238353
Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with maximal ascent k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 2, 3, 1, 1, 0, 0, 4, 3, 2, 1, 1, 0, 0, 2, 6, 3, 2, 1, 1, 0, 0, 4, 6, 6, 2, 2, 1, 1, 0, 0, 3, 10, 6, 5, 2, 2, 1, 1, 0, 0, 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0, 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0, 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0, 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0
Offset: 0
Triangle starts:
00: 1;
01: 1, 0;
02: 2, 0, 0;
03: 2, 1, 0, 0;
04: 3, 1, 1, 0, 0;
05: 2, 3, 1, 1, 0, 0;
06: 4, 3, 2, 1, 1, 0, 0;
07: 2, 6, 3, 2, 1, 1, 0, 0;
08: 4, 6, 6, 2, 2, 1, 1, 0, 0;
09: 3, 10, 6, 5, 2, 2, 1, 1, 0, 0;
10: 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0;
11: 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0;
12: 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0;
13: 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0;
14: 4, 27, 34, 22, 17, 10, 7, 4, 4, 2, 2, 1, 1, 0, 0;
15: 4, 35, 39, 33, 20, 15, 9, 7, 4, 4, 2, 2, 1, 1, 0, 0;
...
The 7 partitions of 5 and their maximal ascents are:
1: [ 1 1 1 1 1 ] 0
2: [ 1 1 1 2 ] 1
3: [ 1 1 3 ] 2
4: [ 1 2 2 ] 1
5: [ 1 4 ] 3
6: [ 2 3 ] 1
7: [ 5 ] 0
There are 2 rows with 0 ascents, 3 with 1 ascent, 1 for ascents 2 and 3, giving row 5 of the triangle.
Cf.
A238354 (partitions by minimal ascent).
-
b:= proc(n, i, t) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1, t)+`if`(i>n, 0, (p->
`if`(t=0 or t-i=0, p, add(coeff(p, x, j)*x^
max(j, t-i), j=0..degree(p))))(b(n-i, i, i)))))
end:
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))(b(n$2, 0)):
seq(T(n), n=0..15);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, b[n, i-1, t] + If[i>n, 0, Function[{p}, If[t == 0 || t-i == 0, p, Sum[Coefficient[p, x, j]*x^ Max[j, t-i], {j, 0, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, k], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
A374760
Number of integer compositions of n whose leaders of strictly decreasing runs are identical.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 28, 38, 52, 70, 95, 129, 173, 234, 318, 428, 579, 784, 1059, 1433, 1942, 2630, 3564, 4835, 6559, 8902, 12094, 16432, 22340, 30392, 41356, 56304, 76692, 104499, 142448, 194264, 265015, 361664, 493749, 674278, 921113, 1258717
Offset: 0
The composition (3,3,2,1,3,2,1) has strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so is counted under a(15).
The a(0) = 1 through a(8) = 15 compositions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (212) (51) (61) (62)
(221) (222) (313) (71)
(11111) (321) (331) (323)
(2121) (421) (332)
(111111) (2122) (431)
(2212) (521)
(2221) (2222)
(1111111) (3131)
(21212)
(21221)
(22121)
(11111111)
For partitions instead of compositions we have
A034296.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have
A000005 for n > 0, ranks
A272919.
Other types of run-leaders (instead of identical):
- For strictly increasing leaders we have
A374762.
- For strictly decreasing leaders we have
A374763.
- For weakly increasing leaders we have
A374764.
- For weakly decreasing leaders we have
A374765.
Cf.
A000009,
A106356,
A188920,
A189076,
A238343,
A261982,
A333213,
A374632,
A374634,
A374635,
A374640,
A374761.
-
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Greater]&]],{n,0,15}]
-
seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ Andrew Howroyd, Jul 31 2024
A374706
Sum of minima of the maximal strictly increasing runs in the weakly increasing prime indices of n.
Original entry on oeis.org
0, 1, 2, 2, 3, 1, 4, 3, 4, 1, 5, 2, 6, 1, 2, 4, 7, 3, 8, 2, 2, 1, 9, 3, 6, 1, 6, 2, 10, 1, 11, 5, 2, 1, 3, 4, 12, 1, 2, 3, 13, 1, 14, 2, 4, 1, 15, 4, 8, 4, 2, 2, 16, 5, 3, 3, 2, 1, 17, 2, 18, 1, 4, 6, 3, 1, 19, 2, 2, 1, 20, 5, 21, 1, 5, 2, 4, 1, 22, 4, 8, 1
Offset: 1
The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), summing to a(540) = 6.
For leaders of constant runs we have
A066328.
For length instead of sum we have
A375136.
A055887 counts sequences of partitions with total sum n.
Cf.
A034296,
A141199,
A189076,
A218482,
A279790,
A333213,
A358836,
A374634,
A374700,
A374758,
A375133.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Total[First/@Split[prix[n],Less]],{n,100}]
A375133
Number of integer partitions of n whose maximal anti-runs have distinct maxima.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 5, 8, 10, 14, 17, 23, 29, 38, 47, 60, 74, 93, 113, 141, 171, 211, 253, 309, 370, 447, 532, 639, 758, 904, 1066, 1265, 1487, 1754, 2053, 2411, 2813, 3289, 3823, 4454, 5161, 5990, 6920, 8005, 9223, 10634, 12218, 14048, 16101, 18462, 21107
Offset: 0
The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with maxima (6,5,3), so y is counted under a(29).
The a(0) = 1 through a(9) = 14 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(311) (321) (61) (71) (72)
(411) (322) (422) (81)
(421) (431) (432)
(511) (521) (522)
(3211) (611) (531)
(3221) (621)
(4211) (711)
(4221)
(4311)
(5211)
(32211)
Includes all strict partitions
A000009.
For compositions instead of partitions we have
A374761.
The complement for minima instead of maxima is
A375404, ranks
A375399.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums
A374706.
Cf.
A141199,
A279790,
A358830,
A358833,
A358836,
A358905,
A374704,
A374757,
A374758,
A375136,
A375400.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]
-
A_x(N) = {my(x='x+O('x^N), f=sum(i=0,N,(x^i)*prod(j=1,i-1,(1-x^(3*j))/(1-x^j)))); Vec(f)}
A_x(51) \\ John Tyler Rascoe, Aug 21 2024
A384884
Number of integer partitions of n with all distinct lengths of maximal gapless runs (decreasing by 0 or 1).
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 46, 60, 79, 104, 131, 170, 215, 271, 342, 431, 535, 670, 830, 1019, 1258, 1547, 1881, 2298, 2787, 3359, 4061, 4890, 5849, 7010, 8361, 9942, 11825, 14021, 16558, 19561, 23057, 27084, 31821, 37312, 43627, 50999, 59500, 69267
Offset: 0
The partition y = (6,6,4,3,3,2) has maximal gapless runs ((6,6),(4,3,3,2)), with lengths (2,4), so y is counted under a(24).
The a(1) = 1 through a(8) = 18 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (211) (221) (222) (322) (332)
(1111) (311) (321) (331) (422)
(2111) (411) (421) (431)
(11111) (2211) (511) (521)
(3111) (2221) (611)
(21111) (3211) (2222)
(111111) (4111) (3221)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
For subsets instead of strict partitions we have
A384175.
For equal instead of distinct lengths we have
A384887.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A044813,
A047993,
A242882,
A287170,
A325324,
A325325,
A356226,
A356230,
A356233,
A356234,
A384176,
A384177,
A384886.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]
Comments