cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 102 results. Next

A374517 Number of integer compositions of n whose leaders of anti-runs are identical.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 46, 85, 160, 301, 561, 1056, 1984, 3730, 7037, 13273, 25056, 47382, 89666, 169833, 322038, 611128, 1160660, 2206219, 4196730, 7988731, 15217557, 29005987, 55321015, 105570219, 201569648, 385059094, 735929616, 1407145439, 2691681402
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (1211)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296 or A115029.
These compositions have ranks A374519.
The complement is counted by A374640.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of weakly increasing runs we have A374631, ranks A374633.
- For leaders of strictly increasing runs we have A374686, ranks A374685.
- For leaders of weakly decreasing runs we have A374742, ranks A374741.
- For leaders of strictly decreasing runs we have A374760, ranks A374759.
Other types of run-leaders (instead of identical):
- For distinct leaders we have A374518.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(g =1/(1 - sum(k=1, N, x^k/(1+x^k))));g}
    A_x(i,N) = {my(x='x+O('x^N), f=(x^i)*(C_x(N)*(x^i)+x^i+1)/(1+x^i)^2);f}
    B_x(i,j,N) = {my(x='x+O('x^N), f=C_x(N)*x^(i+j)/((1+x^i)*(1+x^j)));f}
    D_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,-1+sum(j=0,N-i, A_x(i,N)^j)*(1-B_x(i,i,N)+sum(k=1,N-i,B_x(i,k,N)))));Vec(f)}
    D_x(30) \\ John Tyler Rascoe, Aug 16 2024

Formula

G.f.: 1 + Sum_{i>0} (-1 + Sum_{j>=0} (A(i,x)^j)*(1 + Sum_{k>0, k<>i} (B(i,k,x)))) where A(i,x) = (x^i)*(C(x)*(x^i) + x^i + 1)/(1+x^i)^2, B(i,k,x) = C(x)*x^(i+k)/((1+x^i)*(1+x^k)), and C(x) is the g.f. for A003242. - John Tyler Rascoe, Aug 16 2024

Extensions

a(26) onwards from John Tyler Rascoe, Aug 16 2024

A350842 Number of integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (221)    (222)     (61)
                            (2111)   (321)     (322)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Heinz number rankings are in parentheses below.
The version for no difference 0 is A000009.
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The version for all differences > -2 is A034296, strict A001227.
The opposite version is A072670.
The version for no difference -1 is A116931 (A319630), strict A003114.
The multiplicative version is A350837 (A350838), strict A350840.
The strict case is A350844.
The complement for quotients is counted by A350846 (A350845).
A000041 = integer partitions.
A027187 = partitions of even length.
A027193 = partitions of odd length (A026424).
A323092 = double-free partitions (A320340), strict A120641.
A325534 = separable partitions (A335433).
A325535 = inseparable partitions (A335448).
A350839 = partitions with a gap and conjugate gap (A350841).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]

A342191 Numbers with no adjacent prime indices having quotient < 1/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 42, 43, 45, 47, 48, 49, 53, 54, 55, 59, 60, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 84, 89, 90, 91, 96, 97, 101, 103, 105, 107, 108, 109
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2021

Keywords

Comments

Also Heinz numbers of integer partitions with no adjacent parts having quotient > 2 (counted by A342094). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            18: {1,2,2}         42: {1,2,4}
      2: {1}           19: {8}             43: {14}
      3: {2}           21: {2,4}           45: {2,2,3}
      4: {1,1}         23: {9}             47: {15}
      5: {3}           24: {1,1,1,2}       48: {1,1,1,1,2}
      6: {1,2}         25: {3,3}           49: {4,4}
      7: {4}           27: {2,2,2}         53: {16}
      8: {1,1,1}       29: {10}            54: {1,2,2,2}
      9: {2,2}         30: {1,2,3}         55: {3,5}
     11: {5}           31: {11}            59: {17}
     12: {1,1,2}       32: {1,1,1,1,1}     60: {1,1,2,3}
     13: {6}           35: {3,4}           61: {18}
     15: {2,3}         36: {1,1,2,2}       63: {2,2,4}
     16: {1,1,1,1}     37: {12}            64: {1,1,1,1,1,1}
     17: {7}           41: {13}            65: {3,6}
		

Crossrefs

The multiplicative version (squared instead of doubled) for prime factors is A253784.
These are the Heinz numbers of the partitions counted by A342094.
A003114 counts partitions with adjacent parts differing by more than 1.
A034296 counts partitions with adjacent parts differing by at most 1.
A038548 counts inferior or superior divisors, listed by A161906 or A161908.

Programs

  • Mathematica
    Select[Range[100],Min[Divide@@@Partition[PrimePi/@First/@FactorInteger[#],2,1]]>=1/2&]

A107428 Number of gap-free compositions of n.

Original entry on oeis.org

1, 2, 4, 6, 11, 21, 39, 71, 141, 276, 542, 1070, 2110, 4189, 8351, 16618, 33134, 66129, 131937, 263483, 526453, 1051984, 2102582, 4203177, 8403116, 16800894, 33593742, 67174863, 134328816, 268624026, 537192064, 1074288649, 2148414285, 4296543181, 8592585289
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2005

Keywords

Comments

A gap-free composition contains all the parts between its smallest and largest part. a(5)=11 because we have: 5, 3+2, 2+3, 2+2+1, 2+1+2, 1+2+2, 2+1+1+1, 1+2+1+1, 1+1+2+1, 1+1+1+2, 1+1+1+1+1. - Geoffrey Critzer, Apr 13 2014

Examples

			From _Gus Wiseman_, Oct 04 2022: (Start)
The a(0) = 1 through a(5) = 11 gap-free compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (22)    (23)
                 (21)   (112)   (32)
                 (111)  (121)   (122)
                        (211)   (212)
                        (1111)  (221)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
(End)
		

Crossrefs

The unordered version (partitions) is A034296, ranked by A073491.
The initial case is A107429, unordered A000009, ranked by A333217.
The unordered complement is counted by A239955, ranked by A073492.
These compositions are ranked by A356841.
The complement is counted by A356846, ranked by A356842
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t!,
          `if`(i<1 or n add(b(n, i, 0), i=1..n):
    seq(a(n), n=1..40);  # Alois P. Heinz, Apr 14 2014
  • Mathematica
    Table[Length[Select[Level[Map[Permutations,IntegerPartitions[n]],{2}],Length[Union[#]]==Max[#]-Min[#]+1&]],{n,1,20}] (* Geoffrey Critzer, Apr 13 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1, t + j]/j!, {j, 1, n/i}]]]; a[n_] := Sum[b[n, i, 0], {i, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)

Formula

a(n) ~ 2^(n-2). - Alois P. Heinz, Dec 07 2014
G.f.: Sum_{j>0} Sum_{k>=j} C({j..k},x) where C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) is the g.f. for compositions such that the set of parts equals {s} with C({},x) = 1. - John Tyler Rascoe, Jun 01 2024

Extensions

More terms from Vladeta Jovovic, May 26 2005

A325160 Products of distinct, non-consecutive primes. Squarefree numbers not divisible by any two consecutive primes.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 110, 111, 113, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions into distinct non-consecutive parts (counted by A003114). The nonsquarefree case is A319630, which gives the Heinz numbers of integer partitions with no consecutive parts (counted by A116931).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 52, 515, 5146, 51435, 514416, 5144232, 51442384, ... . Apparently, the asymptotic density of this sequence exists and equals 0.51442... . - Amiram Eldar, Sep 24 2022

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  26: {1,6}
  29: {10}
  31: {11}
  33: {2,5}
  34: {1,7}
  37: {12}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&]
  • PARI
    isok(k) = {if (issquarefree(k), my(v = apply(primepi, factor(k)[,1])); ! #select(x->(v[x+1]-v[x] == 1), [1..#v-1]));} \\ Michel Marcus, Jan 09 2021

A238353 Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with maximal ascent k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 2, 3, 1, 1, 0, 0, 4, 3, 2, 1, 1, 0, 0, 2, 6, 3, 2, 1, 1, 0, 0, 4, 6, 6, 2, 2, 1, 1, 0, 0, 3, 10, 6, 5, 2, 2, 1, 1, 0, 0, 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0, 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0, 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0, 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 26 2014

Keywords

Comments

Reversed rows and also the columns converge to A002865 (setting A002865(0)=0).
Column k=0 is A000005 (n>=1), column k=1 is A237665.
Row sums are A000041.
Sum_{i=0..k} T(n,i) for k=0-9 gives: A000005, A034296, A224956, A238863, A238864, A238865, A238866, A238867, A238868, A238869.

Examples

			Triangle starts:
00:  1;
01:  1,  0;
02:  2,  0,  0;
03:  2,  1,  0,  0;
04:  3,  1,  1,  0,  0;
05:  2,  3,  1,  1,  0,  0;
06:  4,  3,  2,  1,  1,  0, 0;
07:  2,  6,  3,  2,  1,  1, 0, 0;
08:  4,  6,  6,  2,  2,  1, 1, 0, 0;
09:  3, 10,  6,  5,  2,  2, 1, 1, 0, 0;
10:  4, 11, 11,  6,  4,  2, 2, 1, 1, 0, 0;
11:  2, 16, 13, 10,  5,  4, 2, 2, 1, 1, 0, 0;
12:  6, 17, 19, 12,  9,  4, 4, 2, 2, 1, 1, 0, 0;
13:  2, 24, 24, 18, 11,  8, 4, 4, 2, 2, 1, 1, 0, 0;
14:  4, 27, 34, 22, 17, 10, 7, 4, 4, 2, 2, 1, 1, 0, 0;
15:  4, 35, 39, 33, 20, 15, 9, 7, 4, 4, 2, 2, 1, 1, 0, 0;
...
The 7 partitions of 5 and their maximal ascents are:
1:  [ 1 1 1 1 1 ]   0
2:  [ 1 1 1 2 ]   1
3:  [ 1 1 3 ]   2
4:  [ 1 2 2 ]   1
5:  [ 1 4 ]   3
6:  [ 2 3 ]   1
7:  [ 5 ]   0
There are 2 rows with 0 ascents, 3 with 1 ascent, 1 for ascents 2 and 3, giving row 5 of the triangle.
		

Crossrefs

Cf. A238354 (partitions by minimal ascent).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1, t)+`if`(i>n, 0, (p->
          `if`(t=0 or t-i=0, p, add(coeff(p, x, j)*x^
          max(j, t-i), j=0..degree(p))))(b(n-i, i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))(b(n$2, 0)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, b[n, i-1, t] + If[i>n, 0, Function[{p}, If[t == 0 || t-i == 0, p, Sum[Coefficient[p, x, j]*x^ Max[j, t-i], {j, 0, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, k], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)

Formula

G.f. for column k>=1: sum(j>=1, q^j/(1-q^j) * (prod(i=1..j-1, (1-q^((k+1)*i))/(1-q^i) ) - prod(i=1..j-1, (1-q^(k*i))/(1-q^i) ) ) ), see the comment about the g.f. in A238863.

A374760 Number of integer compositions of n whose leaders of strictly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 28, 38, 52, 70, 95, 129, 173, 234, 318, 428, 579, 784, 1059, 1433, 1942, 2630, 3564, 4835, 6559, 8902, 12094, 16432, 22340, 30392, 41356, 56304, 76692, 104499, 142448, 194264, 265015, 361664, 493749, 674278, 921113, 1258717
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,3,2,1,3,2,1) has strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so is counted under a(15).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (21)   (22)    (32)     (33)      (43)       (44)
                 (111)  (31)    (41)     (42)      (52)       (53)
                        (1111)  (212)    (51)      (61)       (62)
                                (221)    (222)     (313)      (71)
                                (11111)  (321)     (331)      (323)
                                         (2121)    (421)      (332)
                                         (111111)  (2122)     (431)
                                                   (2212)     (521)
                                                   (2221)     (2222)
                                                   (1111111)  (3131)
                                                              (21212)
                                                              (21221)
                                                              (22121)
                                                              (11111111)
		

Crossrefs

For partitions instead of compositions we have A034296.
The weak version is A374742, ranks A374744.
The opposite version is A374686, ranks A374685.
The weak opposite version is A374631, ranks A374633.
Ranked by A374759.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
Other types of run-leaders (instead of identical):
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1 + Sum_{k>=1} -1 + 1/(1 - x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A374706 Sum of minima of the maximal strictly increasing runs in the weakly increasing prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 1, 4, 3, 4, 1, 5, 2, 6, 1, 2, 4, 7, 3, 8, 2, 2, 1, 9, 3, 6, 1, 6, 2, 10, 1, 11, 5, 2, 1, 3, 4, 12, 1, 2, 3, 13, 1, 14, 2, 4, 1, 15, 4, 8, 4, 2, 2, 16, 5, 3, 3, 2, 1, 17, 2, 18, 1, 4, 6, 3, 1, 19, 2, 2, 1, 20, 5, 21, 1, 5, 2, 4, 1, 22, 4, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), summing to a(540) = 6.
		

Crossrefs

For leaders of constant runs we have A066328.
A version for compositions is A374684, row-sums of A374683 (length A124768).
Row-sums of A375128.
For length instead of sum we have A375136.
A055887 counts sequences of partitions with total sum n.
A112798 lists prime indices:
- length A001222, distinct A001221
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[First/@Split[prix[n],Less]],{n,100}]

A375133 Number of integer partitions of n whose maximal anti-runs have distinct maxima.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 8, 10, 14, 17, 23, 29, 38, 47, 60, 74, 93, 113, 141, 171, 211, 253, 309, 370, 447, 532, 639, 758, 904, 1066, 1265, 1487, 1754, 2053, 2411, 2813, 3289, 3823, 4454, 5161, 5990, 6920, 8005, 9223, 10634, 12218, 14048, 16101, 18462, 21107
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
These are partitions with no part appearing more than twice and greatest part appearing only once.
Also the number of reversed integer partitions of n whose maximal anti-runs have distinct maxima.

Examples

			The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with maxima (6,5,3), so y is counted under a(29).
The a(0) = 1 through a(9) = 14 partitions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)     (9)
                (21)  (31)   (32)   (42)   (43)    (53)    (54)
                      (211)  (41)   (51)   (52)    (62)    (63)
                             (311)  (321)  (61)    (71)    (72)
                                    (411)  (322)   (422)   (81)
                                           (421)   (431)   (432)
                                           (511)   (521)   (522)
                                           (3211)  (611)   (531)
                                                   (3221)  (621)
                                                   (4211)  (711)
                                                           (4221)
                                                           (4311)
                                                           (5211)
                                                           (32211)
		

Crossrefs

Includes all strict partitions A000009.
For identical instead of distinct see: A034296, A115029, A374760, A374759.
For compositions instead of partitions we have A374761.
For minima instead of maxima we have A375134, ranks A375398.
The complement is counted by A375401, ranks A375403.
These partitions are ranked by A375402, for compositions A374767.
The complement for minima instead of maxima is A375404, ranks A375399.
A000041 counts integer partitions.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]
  • PARI
    A_x(N) = {my(x='x+O('x^N), f=sum(i=0,N,(x^i)*prod(j=1,i-1,(1-x^(3*j))/(1-x^j)))); Vec(f)}
    A_x(51) \\ John Tyler Rascoe, Aug 21 2024

Formula

G.f.: Sum_{i>=0} (x^i * Product_{j=1..i-1} (1-x^(3*j))/(1-x^j)). - John Tyler Rascoe, Aug 21 2024

A384884 Number of integer partitions of n with all distinct lengths of maximal gapless runs (decreasing by 0 or 1).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 46, 60, 79, 104, 131, 170, 215, 271, 342, 431, 535, 670, 830, 1019, 1258, 1547, 1881, 2298, 2787, 3359, 4061, 4890, 5849, 7010, 8361, 9942, 11825, 14021, 16558, 19561, 23057, 27084, 31821, 37312, 43627, 50999, 59500, 69267
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The partition y = (6,6,4,3,3,2) has maximal gapless runs ((6,6),(4,3,3,2)), with lengths (2,4), so y is counted under a(24).
The a(1) = 1 through a(8) = 18 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (222)     (322)      (332)
                    (1111)  (311)    (321)     (331)      (422)
                            (2111)   (411)     (421)      (431)
                            (11111)  (2211)    (511)      (521)
                                     (3111)    (2221)     (611)
                                     (21111)   (3211)     (2222)
                                     (111111)  (4111)     (3221)
                                               (22111)    (4211)
                                               (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For subsets instead of strict partitions we have A384175.
The strict case is A384178, for anti-runs A384880.
For anti-runs we have A384885.
For equal instead of distinct lengths we have A384887.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]
Previous Showing 11-20 of 102 results. Next