cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A349563 Dirichlet convolution of right-shifted Catalan numbers with A349452 (Dirichlet inverse of A011782, 2^(n-1)).

Original entry on oeis.org

1, -1, -2, -1, -2, 18, 68, 311, 1182, 4370, 15772, 56754, 203916, 734636, 2658096, 9661591, 35292134, 129511602, 477376556, 1766730706, 6563071700, 24464139348, 91478369336, 343051112482, 1289887370140, 4861912443284, 18367285959072, 69533415236716, 263747683314904, 1002241674463968, 3814985428350480, 14544633872450487
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Dirichlet convolution with A034729 gives A034731.

Crossrefs

Cf. A000108, A011782, A349452, A349564 (Dirichlet inverse).

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#] * 2^(n/# - 1) &, # < n &]; a[n_] := DivisorSum[n, CatalanNumber[# - 1] * s[n/#] &]; Array[a, 32] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A000108(n) = (binomial(2*n, n)/(n+1));
    A011782(n) = (2^(n-1));
    memoA349452 = Map();
    A349452(n) = if(1==n,1,my(v); if(mapisdefined(memoA349452,n,&v), v, v = -sumdiv(n,d,if(dA011782(n/d)*A349452(d),0)); mapput(memoA349452,n,v); (v)));
    A349563(n) = sumdiv(n,d,A000108(d-1)*A349452(n/d));

Formula

a(n) = Sum_{d|n} A000108(d-1) * A349452(n/d).

A349569 Dirichlet convolution of A000027 (identity function) with A349452 (Dirichlet inverse of A011782, 2^(n-1)).

Original entry on oeis.org

1, 0, -1, -4, -11, -24, -57, -112, -243, -480, -1013, -1964, -4083, -8064, -16309, -32496, -65519, -130440, -262125, -523156, -1048263, -2095104, -4194281, -8383760, -16777015, -33546240, -67107609, -134200860, -268435427, -536835096, -1073741793, -2147417216, -4294962187, -8589803520, -17179867533, -34359463812
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Dirichlet convolution with A034729 gives sigma, A000203, and convolution with A034738 gives A018804.

Crossrefs

Cf. A000027, A011782, A349452, A349570 (Dirichlet inverse).

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#]*2^(n/# - 1) &, # < n &]; a[n_] := DivisorSum[n, # * s[n/#] &]; Array[a, 36] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A011782(n) = (2^(n-1));
    memoA349452 = Map();
    A349452(n) = if(1==n,1,my(v); if(mapisdefined(memoA349452,n,&v), v, v = -sumdiv(n,d,if(dA011782(n/d)*A349452(d),0)); mapput(memoA349452,n,v); (v)));
    A349569(n) = sumdiv(n,d,d * A349452(n/d));

Formula

a(n) = Sum_{d|n} d * A349452(n/d).

A371283 Heinz numbers of sets of divisors of positive integers. Numbers whose prime indices form the set of divisors of some positive integer.

Original entry on oeis.org

2, 6, 10, 22, 34, 42, 62, 82, 118, 134, 166, 218, 230, 254, 314, 358, 382, 390, 422, 482, 554, 566, 662, 706, 734, 798, 802, 862, 922, 1018, 1094, 1126, 1174, 1198, 1234, 1418, 1478, 1546, 1594, 1718, 1754, 1838, 1914, 1934, 1982, 2062, 2126, 2134, 2174, 2306
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2024

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     2: {1}
     6: {1,2}
    10: {1,3}
    22: {1,5}
    34: {1,7}
    42: {1,2,4}
    62: {1,11}
    82: {1,13}
   118: {1,17}
   134: {1,19}
   166: {1,23}
   218: {1,29}
   230: {1,3,9}
   254: {1,31}
   314: {1,37}
   358: {1,41}
   382: {1,43}
   390: {1,2,3,6}
		

Crossrefs

Partitions of this type are counted by A054973.
The unsorted version is A275700.
These numbers have products A371286, unsorted version A371285.
Squarefree case of A371288, counted by A371284.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],SameQ[prix[#],Divisors[Last[prix[#]]]]&]

A371285 Heinz number of the multiset union of the divisor sets of each prime index of n.

Original entry on oeis.org

1, 2, 6, 4, 10, 12, 42, 8, 36, 20, 22, 24, 390, 84, 60, 16, 34, 72, 798, 40, 252, 44, 230, 48, 100, 780, 216, 168, 1914, 120, 62, 32, 132, 68, 420, 144, 101010, 1596, 2340, 80, 82, 504, 4386, 88, 360, 460, 5170, 96, 1764, 200, 204, 1560, 42294, 432, 220, 336
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2024

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 105 are {2,3,4}, with divisor sets {{1,2},{1,3},{1,2,4}}, with multiset union {1,1,1,2,2,3,4}, with Heinz number 2520, so a(105) = 2520.
The terms together with their prime indices begin:
          1: {}
          2: {1}
          6: {1,2}
          4: {1,1}
         10: {1,3}
         12: {1,1,2}
         42: {1,2,4}
          8: {1,1,1}
         36: {1,1,2,2}
         20: {1,1,3}
         22: {1,5}
         24: {1,1,1,2}
        390: {1,2,3,6}
         84: {1,1,2,4}
         60: {1,1,2,3}
         16: {1,1,1,1}
         34: {1,7}
         72: {1,1,1,2,2}
		

Crossrefs

Product of A275700 applied to each prime index.
The squarefree case is also A275700.
The sorted version is A371286.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@Join@@Divisors/@prix[n],{n,100}]

Formula

If n = prime(x_1)*...*prime(x_k) then a(n) = A275700(x_1)*...*A275700(x_k).

A371286 Products of elements of A275700 (Heinz numbers of divisor sets). Numbers with a (necessarily unique) factorization into elements of A275700.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 20, 22, 24, 32, 34, 36, 40, 42, 44, 48, 60, 62, 64, 68, 72, 80, 82, 84, 88, 96, 100, 118, 120, 124, 128, 132, 134, 136, 144, 160, 164, 166, 168, 176, 192, 200, 204, 216, 218, 220, 230, 236, 240, 248, 252, 254, 256, 264, 268, 272, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2024

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime factorizations and unique factorizations into terms of A275700 begin:
   1 =             = ()
   2 = 2           = (2)
   4 = 2*2         = (2*2)
   6 = 2*3         = (6)
   8 = 2*2*2       = (2*2*2)
  10 = 2*5         = (10)
  12 = 2*2*3       = (2*6)
  16 = 2*2*2*2     = (2*2*2*2)
  20 = 2*2*5       = (2*10)
  22 = 2*11        = (22)
  24 = 2*2*2*3     = (2*2*6)
  32 = 2*2*2*2*2   = (2*2*2*2*2)
  34 = 2*17        = (34)
  36 = 2*2*3*3     = (6*6)
  40 = 2*2*2*5     = (2*2*10)
  42 = 2*3*7       = (42)
  44 = 2*2*11      = (2*22)
  48 = 2*2*2*2*3   = (2*2*2*6)
  60 = 2*2*3*5     = (6*10)
  62 = 2*31        = (62)
  64 = 2*2*2*2*2*2 = (2*2*2*2*2*2)
  68 = 2*2*17      = (2*34)
  72 = 2*2*2*3*3   = (2*6*6)
  80 = 2*2*2*2*5   = (2*2*2*10)
  82 = 2*41        = (82)
  84 = 2*2*3*7     = (2*42)
  88 = 2*2*2*11    = (2*2*22)
  96 = 2*2*2*2*2*3 = (2*2*2*2*6)
		

Crossrefs

Products of elements of A275700.
The squarefree case is A371283.
The unsorted version is A371285.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    nn=100;
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1, {{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    s=Table[Times@@Prime/@Divisors[n],{n,nn}];
    m=Max@@Table[Select[Range[2,k],prix[#] == Divisors[Last[prix[#]]]&],{k,nn}];
    Join@@Position[Table[Length[Select[facs[n], SubsetQ[s,Union[#]]&]],{n,m}],1]

A245282 G.f.: Sum_{n>=1} Fibonacci(n+1) * x^n / (1 - x^n).

Original entry on oeis.org

1, 3, 4, 8, 9, 19, 22, 42, 59, 100, 145, 257, 378, 634, 999, 1639, 2585, 4255, 6766, 11051, 17736, 28804, 46369, 75316, 121402, 196798, 317870, 514868, 832041, 1347372, 2178310, 3526217, 5703035, 9230052, 14930382, 24162310, 39088170, 63252754, 102334536, 165591226, 267914297
Offset: 1

Views

Author

Paul D. Hanna, Aug 21 2014

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 4*x^3 + 8*x^4 + 9*x^5 + 19*x^6 + 22*x^7 +...
where by definition
A(x) = 1*x/(1-x) + 2*x^2/(1-x^2) + 3*x^3/(1-x^3) + 5*x^4/(1-x^4) + 8*x^5/(1-x^5) + 13*x^6/(1-x^6) + 21*x^7/(1-x^7) + 34*x^8/(1-x^8) + 55*x^9/(1-x^9) + 89*x^10/(1-x^10) + 144*x^11/(1-x^11) +...+ Fibonacci(n+1)*x^n/(1-x^n) +...
The g.f. is also given by the series identity:
A(x) = x*(1+x)/(1-x-x^2) + x^2*(1+x^2)/(1-x^2-x^4) + x^3*(1+x^3)/(1-x^3-x^6) + x^4*(1+x^4)/(1-x^4-x^8) + x^5*(1+x^5)/(1-x^5-x^10) + x^6*(1+x^6)/(1-x^6-x^12) + x^7*(1+x^7)/(1-x^7-x^14) +...+ x^n*(1+x^n)/(1-x^n-x^(2*n)) +...
And also we have the series:
A(x) = x*(1 + x) + x^2*((1+x)^2 + (1+x^2)) + x^3*((1+x)^3 + (1+x^3))
+ x^4*((1+x)^4 + (1+x^2)^2 + (1+x^4)) + x^5*((1+x)^5 + (1+x^5))
+ x^6*((1+x)^6 + (1+x^2)^3 + (1+x^3)^2 + (1+x^6))
+ x^7*((1+x)^7 + (1+x^7))
+ x^8*((1+x)^8 + (1+x^2)^4 + (1+x^4)^2 + (1+x^8))
+ x^9*((1+x)^9 + (1+x^3)^3 + (1+x^9))
+ x^10*((1+x)^10 + (1+x^2)^5 + (1+x^5)^2 + (1+x^10))
+ x^11*((1+x)^11 + (1+x^11))
+ x^12*((1+x)^12 + (1+x^2)^6 + (1+x^3)^4 + (1+x^4)^3 + (1+x^6)^2 + (1+x^12))
+...+ x^n * Sum_{d|n} (1 + x^d)^(n/d) +...
or, more explicitly,
A(x) = x*(1 + x) + x^2*(2 + 2*x + 2*x^2) + x^3*(2 + 3*x + 3*x^2 + 2*x^3)
+ x^4*(3 + 4*x + 8*x^2 + 4*x^3 + 3*x^4)
+ x^5*(2 + 5*x + 10*x^2 + 10*x^3 + 5*x^4 + 2*x^5)
+ x^6*(4 + 6*x + 18*x^2 + 22*x^3 + 18*x^4 + 6*x^5 + 4*x^6)
+ x^7*(2 + 7*x + 21*x^2 + 35*x^3 + 35*x^4 + 21*x^5 + 7*x^6 + 2*x^7)
+ x^8*(4 + 8*x + 32*x^2 + 56*x^3 + 78*x^4 + 56*x^5 + 32*x^6 + 8*x^7 + 4*x^8)
+ x^9*(3 + 9*x + 36*x^2 + 87*x^3 + 126*x^4 + 126*x^5 + 87*x^6 + 36*x^7 + 9*x^8 + 3*x^9)
+ x^10*(4 + 10*x + 50*x^2 + 120*x^3 + 220*x^4 + 254*x^5 + 220*x^6 + 120*x^7 + 50*x^8 + 10*x^9 + 4*x^10)
+ x^11*(2 + 11*x + 55*x^2 + 165*x^3 + 330*x^4 + 462*x^5 + 462*x^6 + 330*x^7 + 165*x^8 + 55*x^9 + 11*x^10 + 2*x^11)
+ x^12*(6 + 12*x + 72*x^2 + 224*x^3 + 513*x^4 + 792*x^5 + 952*x^6 + 792*x^7 + 513*x^8 + 224*x^9 + 72*x^10 + 12*x^11 + 6*x^12) + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(combinat[fibonacci](d+1), d in divisors(n)), n=1..60); # Ridouane Oudra, Apr 10 2025
  • PARI
    {a(n)=polcoeff(sum(m=1, n, fibonacci(m+1)*x^m/(1-x^m +x*O(x^n))), n)}
    for(n=1,50, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=1, n, x^m*(1+x^m)/(1-x^m-x^(2*m) +x*O(x^n)) ), n)}
    for(n=1, 50, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=x+x^2);A=sum(m=1,n,x^m*sumdiv(m,d,(1 + x^(m/d) +x*O(x^n))^d) );polcoeff(A,n)}
    for(n=1,50,print1(a(n),", "))

Formula

G.f.: Sum_{n>=1} x^n * (1 + x^n) / (1 - x^n - x^(2*n)).
G.f.: Sum_{n>=1} x^n * Sum_{d|n} (1 + x^d)^(n/d).
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n+1). - Vaclav Kotesovec, Aug 22 2014
a(n) = Sum_{d|n} Fibonacci(d+1). - Ridouane Oudra, Apr 10 2025

A323766 Dirichlet convolution of the integer partition numbers A000041 with the number of divisors function A000005.

Original entry on oeis.org

1, 1, 4, 5, 12, 9, 25, 17, 42, 39, 64, 58, 132, 103, 173, 200, 303, 299, 491, 492, 756, 832, 1122, 1257, 1858, 1975, 2646, 3083, 4057, 4567, 6118, 6844, 8913, 10265, 12912, 14931, 19089, 21639, 27003, 31397, 38830, 44585, 55138, 63263, 77371, 89585, 108076
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of constant multiset partitions of constant multiset partitions of integer partitions of n.

Examples

			The a(6) = 25 constant multiset partitions of constant multiset partitions of integer partitions of 6:
  ((6))
  ((52))
  ((42))
  ((33))
  ((3)(3))
  ((3))((3))
  ((411))
  ((321))
  ((222))
  ((2)(2)(2))
  ((2))((2))((2))
  ((3111))
  ((2211))
  ((21)(21))
  ((21))((21))
  ((21111))
  ((111111))
  ((111)(111))
  ((11)(11)(11))
  ((111))((111))
  ((11))((11))((11))
  ((1)(1)(1)(1)(1)(1))
  ((1)(1)(1))((1)(1)(1))
  ((1)(1))((1)(1))((1)(1))
  ((1))((1))((1))((1))((1))((1))
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,1,Sum[PartitionsP[d]*DivisorSigma[0,n/d],{d,Divisors[n]}]],{n,0,30}]
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, numbpart(d)*numdiv(n/d))); \\ Michel Marcus, Jan 28 2019

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019

A331638 Number of binary matrices with nonzero rows, a total of n ones and each column with the same number of ones and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 3, 5, 16, 17, 140, 65, 1395, 2969, 22176, 1025, 1050766, 4097, 13010328, 128268897, 637598438, 65537, 64864962683, 262145, 1676258452736, 28683380484257, 24908619669860, 4194305, 30567710172480050, 8756434134071649, 62128557507554504, 21271147396968151093
Offset: 1

Views

Author

Andrew Howroyd, Jan 23 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
From Gus Wiseman, Apr 03 2025: (Start)
Also the number of multiset partitions such that (1) the blocks together cover an initial interval of positive integers, (2) the blocks are sets of a common size, and (3) the block-sizes sum to n. For example, the a(1) = 1 through a(4) = 16 multiset partitions are:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{1}} {{1},{1},{1}} {{1,2},{1,2}}
{{1},{2}} {{1},{1},{2}} {{1,2},{1,3}}
{{1},{2},{2}} {{1,2},{2,3}}
{{1},{2},{3}} {{1,2},{3,4}}
{{1,3},{2,3}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1},{1},{1},{1}}
{{1},{1},{1},{2}}
{{1},{1},{2},{2}}
{{1},{1},{2},{3}}
{{1},{2},{2},{2}}
{{1},{2},{2},{3}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
(End)

Crossrefs

For constant instead of strict blocks we have A034729.
Without equal sizes we have A116540 (normal set multipartitions).
Without strict blocks we have A317583.
For distinct instead of equal sizes we have A382428, non-strict blocks A326517.
For equal sums instead of sizes we have A382429, non-strict blocks A326518.
Normal multiset partitions: A255903, A255906, A317532, A382203, A382204, A382216.

Formula

a(n) = Sum_{d|n} A330942(n/d, d).
a(p) = 2^(p-1) + 1 for prime p.

A349564 Dirichlet convolution of A011782 [2^(n-1)] with A349450 [Dirichlet inverse of right-shifted Catalan numbers].

Original entry on oeis.org

1, 1, 2, 2, 2, -14, -68, -308, -1178, -4366, -15772, -56780, -203916, -734772, -2658088, -9662208, -35292134, -129514026, -477376556, -1766739436, -6563071972, -24464170892, -91478369336, -343051227304, -1289887370136, -4861912851116, -18367285963792, -69533416706328, -263747683314904, -1002241679797688
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Dirichlet convolution with A034731 gives A034729.

Crossrefs

Cf. A000108, A011782, A349452, A349563 (Dirichlet inverse).

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#] * CatalanNumber[n/# - 1] &, # < n &]; a[n_] := DivisorSum[n, 2^(# - 1) * s[n/#] &]; Array[a, 30] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A000108(n) = (binomial(2*n, n)/(n+1));
    memoA349450 = Map();
    A349450(n) = if(1==n,1,my(v); if(mapisdefined(memoA349450,n,&v), v, v = -sumdiv(n,d,if(dA000108((n/d)-1)*A349450(d),0)); mapput(memoA349450,n,v); (v)));
    A349564(n) = sumdiv(n,d,2^(d-1)*A349450(n/d));

Formula

a(n) = Sum_{d|n} 2^(d-1) * A349450(n/d).

A339916 The sum of 2^((d-1)/2) over all divisors of 2n+1.

Original entry on oeis.org

1, 3, 5, 9, 19, 33, 65, 135, 257, 513, 1035, 2049, 4101, 8211, 16385, 32769, 65571, 131085, 262145, 524355, 1048577, 2097153, 4194455, 8388609, 16777225, 33554691, 67108865, 134217765, 268435971, 536870913, 1073741825, 2147484699, 4294967365, 8589934593, 17179871235, 34359738369, 68719476737
Offset: 0

Views

Author

Don Knuth, Dec 22 2020

Keywords

Comments

This is sort of a bitmap representation of the divisors of odd numbers.

Examples

			For n=7, a(7)=2^7+2^2+2^1+2^0=135 because the divisors of 15 are 15,5,3,1.
		

Crossrefs

Cf. A114001 (bit reversal), A034729, A055895.

Programs

  • Maple
    seq(add(2^((d-1)/2),d=numtheory:-divisors(2*n+1)),n=0..100); # Robert Israel, Dec 24 2020
  • Mathematica
    A339916[n_]:=Block[{d=Divisors[2n+1]},Sum[2^((d[[k]]-1)/2),{k,Length[d]}]];Array[A339916,50,0]
  • PARI
    a(n) = sumdiv(2*n+1, d, 2^((d-1)/2)); \\ Michel Marcus, Dec 23 2020
    
  • Python
    from sympy import divisors
    def a(n): return sum(2**((d-1)//2) for d in divisors(2*n+1))
    print([a(n) for n in range(37)]) # Michael S. Branicky, Dec 24 2020
Previous Showing 21-30 of 45 results. Next