A139459
Triangle read by rows: binomial(3*n,3*k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 84, 84, 1, 1, 220, 924, 220, 1, 1, 455, 5005, 5005, 455, 1, 1, 816, 18564, 48620, 18564, 816, 1, 1, 1330, 54264, 293930, 293930, 54264, 1330, 1, 1, 2024, 134596, 1307504, 2704156, 1307504, 134596, 2024, 1, 1, 2925, 296010, 4686825, 17383860, 17383860, 4686825, 296010, 2925, 1
Offset: 0
First few rows of the triangle are:
[0] 1;
[1] 1, 1;
[2] 1, 20, 1;
[3] 1, 84, 84, 1;
[4] 1, 220, 924, 220, 1;
[5] 1, 455, 5005, 5005, 455, 1;
[6] 1, 816, 18564, 48620, 18564, 816, 1;
...
Row 5 = (1, 220, 924, 220, 1) = ConvOffs transform of (1, 20, 84, 220); where A006566 = (0, 1, 20, 84, 220, 455, ...).
-
Table[Binomial[3*n, 3*k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 01 2025 *)
A207536
Triangle of coefficients of polynomials u(n,x) jointly generated with A105070; see Formula section.
Original entry on oeis.org
1, 1, 2, 1, 6, 1, 12, 4, 1, 20, 20, 1, 30, 60, 8, 1, 42, 140, 56, 1, 56, 280, 224, 16, 1, 72, 504, 672, 144, 1, 90, 840, 1680, 720, 32, 1, 110, 1320, 3696, 2640, 352, 1, 132, 1980, 7392, 7920, 2112, 64, 1, 156, 2860, 13728, 20592, 9152, 832, 1, 182, 4004
Offset: 1
First seven rows:
1;
1, 2;
1, 6,
1, 12, 4;
1, 20, 20,
1, 30, 60, 8;
1, 42, 140, 56;
From _Philippe Deléham_, Apr 08 2012: (Start)
(1, 0, 1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 6, 0, 0;
1, 12, 4, 0, 0;
1, 20, 20, 0, 0, 0;
1, 30, 60, 8, 0, 0, 0;
1, 42, 140, 56, 0, 0, 0, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207536 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A105070 *)
A382494
a(n) = Sum_{k=0..floor(n/2)} binomial(k+2,2) * binomial(2*k,2*n-4*k).
Original entry on oeis.org
1, 0, 3, 3, 6, 36, 16, 150, 165, 430, 1071, 1365, 4453, 6258, 14841, 29169, 49941, 115356, 190091, 404811, 750792, 1393956, 2808438, 4988268, 9905746, 18207126, 34231566, 65278964, 119255889, 227648406, 418394087, 782045001, 1457704212, 2681909302
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1500
- Index entries for linear recurrences with constant coefficients, signature (0,6,6,-15,-18,5,12,-3,32,12,-6,-4,18,-33,26,-15,6,-1).
-
[&+[Binomial(k+2, 2)*Binomial(2*k, 2*n-4*k): k in [0..n]]: n in [0..41]]; // Vincenzo Librandi, May 11 2025
-
Table[Sum[Binomial[k+2,2]*Binomial[2*k, 2*n-4*k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, May 11 2025 *)
-
a(n) = sum(k=0, n\2, binomial(k+2, 2)*binomial(2*k, 2*n-4*k));
-
my(N=2, M=40, x='x+O('x^M), X=1-x^2-x^3, Y=5); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
A382495
a(n) = Sum_{k=0..floor(n/2)} binomial(k+3,3) * binomial(2*k,2*n-4*k).
Original entry on oeis.org
1, 0, 4, 4, 10, 60, 30, 300, 335, 1000, 2506, 3500, 11879, 17304, 44220, 88592, 161865, 385704, 660964, 1475100, 2807956, 5459860, 11313094, 20816004, 42774780, 80798128, 157292750, 307887904, 579776799, 1138007940, 2146348214, 4126143900, 7878910238, 14878269368
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1500
- Index entries for linear recurrences with constant coefficients, signature (0,8,8,-28,-40,28,72,2,16,20,-80,-114,56,-68,0,35,40,-96,128,-110,64,-28,8,-1).
-
[&+[Binomial(k+3, 3)*Binomial(2*k, 2*n-4*k): k in [0..n]]: n in [0..40]]; // Vincenzo Librandi, May 12 2025
-
Table[Sum[Binomial[k+3,3]*Binomial[2*k, 2*n-4*k],{k,0,Floor[n/2]}],{n,0,33}] (* Vincenzo Librandi, May 12 2025 *)
-
a(n) = sum(k=0, n\2, binomial(k+3, 3)*binomial(2*k, 2*n-4*k));
-
my(N=3, M=40, x='x+O('x^M), X=1-x^2-x^3, Y=5); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
A384907
Number of permutations of {1..n} with all distinct lengths of maximal anti-runs (not increasing by 1).
Original entry on oeis.org
1, 1, 1, 5, 17, 97, 587, 4291, 33109, 319967, 3106433, 35554459, 419889707, 5632467097, 77342295637, 1201240551077, 18804238105133, 328322081898745, 5832312989183807, 113154541564902427, 2229027473451951265, 47899977701182298255, 1037672943682453127645
Offset: 0
The permutation (1,2,4,3,5,7,8,6,9) has maximal anti-runs ((1),(2,4,3,5,7),(8,6,9)), with lengths (1,5,3), so is counted under a(9).
The a(0) = 1 through a(4) = 17 permutations:
() (1) (2,1) (1,3,2) (1,2,4,3)
(2,1,3) (1,3,2,4)
(2,3,1) (1,4,2,3)
(3,1,2) (1,4,3,2)
(3,2,1) (2,1,3,4)
(2,1,4,3)
(2,3,1,4)
(2,4,1,3)
(2,4,3,1)
(3,1,4,2)
(3,2,1,4)
(3,2,4,1)
(3,4,2,1)
(4,1,3,2)
(4,2,1,3)
(4,3,1,2)
(4,3,2,1)
For subsets instead of permutations we have
A384177.
For runs instead of anti-runs we have
A384891.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
Cf.
A000255,
A044813,
A072574,
A242882,
A325325,
A328592,
A329739,
A351202,
A356606,
A384886,
A384892.
-
Table[Length[Select[Permutations[Range[n]],UnsameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
-
a(n)=if(n,my(b(n)=sum(i=0,n-1,(-1)^i*(n-i)!*binomial(n-1,i)), d=floor(sqrt(2*n)), p=polcoef(prod(i=1,n,1+x*y^i,1+O(y*y^n)*((1-x^(d+1))/(1-x))),n,y)); sum(i=1,d,b(n+1-i)*i!*polcoef(p,i)),1) \\ Christian Sievers, Jun 22 2025
A385215
Number of maximal sparse submultisets of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
The sparse submultisets of the prime indices of n = 8 are {{},{1},{1,1},{1,1,1}}, with maximization {{1,1,1}}. So a(8) = 1.
The sparse submultisets of the prime indices of n = 462 are {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with maximization {{1,4},{1,5},{2,4},{2,5}}, so a(462) = 4.
The prime indices of n together their a(n) maximal sparse submultisets for n = 1, 6, 210, 462, 30030, 46410:
{} {1,2} {1,2,3,4} {1,2,4,5} {1,2,3,4,5,6} {1,2,3,4,6,7}
------------------------------------------------------------
{} {1} {1,3} {1,4} {2,5} {1,3,6}
{2} {1,4} {1,5} {1,3,5} {1,3,7}
{2,4} {2,4} {1,3,6} {1,4,6}
{2,5} {1,4,6} {1,4,7}
{2,4,6} {2,4,6}
{2,4,7}
This is the maximal case of
A166469.
For binary instead of prime indices we have
A384883, maximal case of
A245564.
The greatest number whose prime indices are one of these submultisets is
A385216.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A384887 counts partitions with equal lengths of gapless runs, distinct
A384884.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
maxq[els_]:=Select[els,Not[Or@@Table[Divisible[oth,#],{oth,DeleteCases[els,#]}]]&];
Table[Length[maxq[Select[Divisors[n],FreeQ[Differences[prix[#]],1]&]]],{n,30}]
A385575
Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1.
Original entry on oeis.org
1, 2, 4, 8, 11, 13, 16, 19, 22, 25, 26, 32, 35, 38, 44, 49, 50, 52, 64, 67, 70, 76, 87, 88, 91, 93, 97, 98, 100, 104, 107, 109, 117, 128, 131, 134, 140, 151, 152, 155, 157, 167, 174, 176, 179, 182, 185, 186, 193, 194, 196, 200, 203, 205, 208, 211, 214, 217
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
8: 1000 ~ {4}
11: 1011 ~ {1,2,4}
13: 1101 ~ {1,3,4}
16: 10000 ~ {5}
19: 10011 ~ {1,2,5}
22: 10110 ~ {2,3,5}
25: 11001 ~ {1,4,5}
26: 11010 ~ {2,4,5}
32: 100000 ~ {6}
35: 100011 ~ {1,2,6}
38: 100110 ~ {2,3,6}
44: 101100 ~ {3,4,6}
49: 110001 ~ {1,5,6}
50: 110010 ~ {2,5,6}
52: 110100 ~ {3,5,6}
64: 1000000 ~ {7}
67: 1000011 ~ {1,2,7}
70: 1000110 ~ {2,3,7}
76: 1001100 ~ {3,4,7}
87: 1010111 ~ {1,2,3,5,7}
88: 1011000 ~ {4,5,7}
91: 1011011 ~ {1,2,4,5,7}
93: 1011101 ~ {1,3,4,5,7}
97: 1100001 ~ {1,6,7}
98: 1100010 ~ {2,6,7}
100: 1100100 ~ {3,6,7}
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],Length[Split[bpe[#],#2==#1+1&]]==Length[Split[bpe[#],#2!=#1+1&]]&]
-
is_ok(n)=hammingweight(n)==2*hammingweight(bitand(n,n>>1))+1 \\ Christian Sievers, Jul 18 2025
A034850
Triangular array formed by taking every other term of Pascal's triangle.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 6, 1, 5, 10, 1, 6, 20, 6, 1, 21, 35, 7, 1, 28, 70, 28, 1, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 13, 286, 1287, 1716, 715, 78, 1, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435
Offset: 0
Triangle begins:
1;
1;
2;
1, 3;
1, 6, 1;
5, 10, 1;
6, 20, 6;
1, 21, 35, 7;
-
Table[If[k < 0 || k > (Floor[n/4] + Floor[(n + 1)/4]), 0, Binomial[n, 2*k + Mod[Floor[(n + 1)/2], 2]]], {n, 0, 20}, {k, 0, (Floor[n/4] + Floor[(n + 1)/4])}] // Flatten (* G. C. Greubel, Feb 23 2018 *)
-
{T(n, k) = if( k<0 || k>n\4 + (n+1)\4, 0, binomial(n, 2*k + (n+1)\2%2))}; /* Michael Somos, Feb 11 2004 */
A119462
Triangle read by rows: T(n,k) is the number of circular binary words of length n having k occurrences of 01 (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 2, 2, 2, 2, 6, 2, 12, 2, 2, 20, 10, 2, 30, 30, 2, 2, 42, 70, 14, 2, 56, 140, 56, 2, 2, 72, 252, 168, 18, 2, 90, 420, 420, 90, 2, 2, 110, 660, 924, 330, 22, 2, 132, 990, 1848, 990, 132, 2, 2, 156, 1430, 3432, 2574, 572, 26, 2, 182, 2002, 6006, 6006, 2002, 182, 2, 2, 210, 2730, 10010, 12870, 6006, 910, 30
Offset: 0
T(3,1) = 6 because we have 001, 010, 011, 100, 101 and 110.
Triangle starts:
1;
2;
2, 2;
2, 6;
2, 12, 2;
2, 20, 10;
2, 30, 30, 2;
...
- Muniru A Asiru, Rows n=0..150, flattened
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
-
Concatenation([1],Flat(List([1..15],n->List([0..Int(n/2)],k->2*Binomial(n,2*k))))); # Muniru A Asiru, Dec 20 2018
-
T:=proc(n,k) if n=0 and k=0 then 1 else 2*binomial(n,2*k) fi end: for n from 0 to 15 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
-
T[0,0]:=1; T[n_,k_]:= 2*Binomial[n,2k]; Table[T[n,k],{n,0,15},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Apr 19 2025 *)
A178618
Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1) * sum_{j=0..infinity} *binomial(n+3*j,3*j)*x^j, in row n, column k.
Original entry on oeis.org
1, 1, 2, 1, 7, 1, 1, 16, 10, 1, 30, 45, 5, 1, 50, 141, 50, 1, 1, 77, 357, 266, 28, 1, 112, 784, 1016, 266, 8, 1, 156, 1554, 3139, 1554, 156, 1, 1, 210, 2850, 8350, 6765, 1452, 55, 1, 275, 4917, 19855, 24068, 9042, 880, 11
Offset: 0
1;
1, 2;
1, 7, 1;
1, 16, 10;
1, 30, 45, 5;
1, 50, 141, 50, 1;
1, 77, 357, 266, 28;
1, 112, 784, 1016, 266, 8;
1, 156, 1554, 3139, 1554, 156, 1;
1, 210, 2850, 8350, 6765, 1452, 55;
1, 275, 4917, 19855, 24068, 9042, 880, 11;
-
A178618 := proc(n,k)
(1-x)^(n+1)*add( binomial(n+3*j,3*j)*x^j,j=0..n+1) ;
coeftayl(%,x=0,k) ;
end proc:
seq(seq(A178618(n,k),k=0..n),n=0..8) ; # R. J. Mathar, Nov 05 2012
-
p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 3*k, 3*k]*x^k, {k, 0, Infinity}]
Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
Comments