cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 98 results. Next

A286159 Lower triangular region of array A286156, transposed.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 4, 3, 10, 1, 4, 8, 7, 15, 1, 4, 8, 3, 6, 21, 1, 4, 8, 13, 7, 11, 28, 1, 4, 8, 13, 3, 12, 10, 36, 1, 4, 8, 13, 19, 7, 6, 16, 45, 1, 4, 8, 13, 19, 3, 12, 11, 15, 55, 1, 4, 8, 13, 19, 26, 7, 18, 17, 22, 66, 1, 4, 8, 13, 19, 26, 3, 12, 6, 10, 21, 78, 1, 4, 8, 13, 19, 26, 34, 7, 18, 11, 16, 29, 91, 1, 4, 8, 13, 19, 26, 34, 3, 12, 25, 17, 23, 28, 105
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Examples

			The first ten rows of this triangular array:
  1,
  1, 3,
  1, 4, 6,
  1, 4, 3, 10,
  1, 4, 8,  7, 15,
  1, 4, 8,  3,  6, 21,
  1, 4, 8, 13,  7, 11, 28,
  1, 4, 8, 13,  3, 12, 10, 36,
  1, 4, 8, 13, 19,  7,  6, 16, 45,
  1, 4, 8, 13, 19,  3, 12, 11, 15, 55
		

Crossrefs

Transpose: A268158.
Rows converge towards A034856.

Programs

  • Mathematica
    Map[((#1 + #2)^2 + 3 #1 + #2)/2 & @@ # & /@ Reverse@ # &, Table[Reverse@ QuotientRemainder[n, k], {n, 14}, {k, n}]] // Flatten (* Michael De Vlieger, May 20 2017 *)
  • Python
    def T(a, b): return ((a + b)**2 + 3*a + b)//2
    def a(n, k): return T(n%k, n//k)
    for n in range(1, 21): print([a(n , k) for k in range(1, n + 1)][::-1])  # Indranil Ghosh, May 20 2017
  • Scheme
    (define (A286159 n) (A286156bi (A002024 n) (A004736 n))) ;; For A286156bi see A286156.
    

A302537 a(n) = (n^2 + 13*n + 2)/2.

Original entry on oeis.org

1, 8, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205, 1255, 1306, 1358, 1411, 1465, 1520, 1576
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 7, 1, 0, 0, 0, ...].
Numbers m > 0 such that 8*m + 161 is a square.

Examples

			Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n):
.                                                                    o
.                                                                  o o
.                                                    o           o o o
.                                                  o o         o o o o
.                                      o         o o o       o o o o o
.                                    o o       o o o o     o o o o o o
.                          o       o o o     o o o o o   o . . . . . o
.                        o o     o o o o   o . . . . o   o . . . . . o
.                o     o o o   o . . . o   o . . . . o   o . . . . . o
.              o o   o . . o   o . . . o   o . . . . o   o . . . . . o
.        o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.      o o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.  o   o o   o o o   o o o o   o o o o o   o o o o o o   o o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
----------------------------------------------------------------------
.  1     8      16        25          35            46              58
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Sequences whose n-th terms are of the form binomial(n, 2) + n*k + 1:
A152947 (k = 0); A000124 (k = 1); A000217 (k = 2); A034856 (k = 3);
A052905 (k = 4); A051936 (k = 5); A246172 (k = 6).

Programs

  • Magma
    A302537:= func< n | ((n+1)^2 +12*n +1)/2 >;
    [A302537(n): n in [0..50]]; // G. C. Greubel, Jan 21 2025
    
  • Maple
    a := n -> (n^2 + 13*n + 2)/2;
    seq(a(n), n = 0 .. 100);
  • Mathematica
    Table[(n^2 + 13 n + 2)/2, {n, 0, 100}]
    CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
  • Maxima
    makelist((n^2 + 13*n + 2)/2, n, 0, 100);
    
  • PARI
    a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
    
  • Python
    def A302537(n): return (n**2 + 13*n + 2)//2
    print([A302537(n) for n in range(51)]) # G. C. Greubel, Jan 21 2025

Formula

a(n) = binomial(n + 1, 2) + 6*n + 1 = binomial(n, 2) + 7*n + 1.
a(n) = a(n-1) + n + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, where a(0) = 1, a(1) = 8 and a(2) = 16.
a(n) = 2*a(n-1) - a(n-2) + 1.
a(n) = A004120(n+1) for n > 1.
a(n) = A056119(n) + 1.
a(n) = A152947(n+1) + A008589(n).
a(n) = A060544(n+1) - A002939(n).
a(n) = A000578(n+1) - A162261(n) for n > 0.
G.f.: (1 + 5*x - 5*x^2)/(1 - x)^3.
E.g.f.: (1/2)*(2 + 14*x + x^2)*exp(x).
Sum_{n>=0} 1/a(n) = 24097/45220 + 2*Pi*tan(sqrt(161)*Pi/2) / sqrt(161) = 1.4630922534498496... - Vaclav Kotesovec, Apr 11 2018

A323221 a(n) = n*(n + 5)*(n + 7)/6 + 1.

Original entry on oeis.org

1, 9, 22, 41, 67, 101, 144, 197, 261, 337, 426, 529, 647, 781, 932, 1101, 1289, 1497, 1726, 1977, 2251, 2549, 2872, 3221, 3597, 4001, 4434, 4897, 5391, 5917, 6476, 7069, 7697, 8361, 9062, 9801, 10579, 11397, 12256, 13157, 14101, 15089, 16122, 17201, 18327, 19501
Offset: 0

Views

Author

Peter Luschny, Jan 25 2019

Keywords

Comments

a(n) is related to the total angular defect of certain polytopes. See Hilton and Pedersen, Cor. 1; compare A275874.

Examples

			For n = 2 the sum formula gives:
I(2) = {{0,0}, {0,1}, {1,0}, {0,2}, {1,1}, {2,0}, {0,3}, {1,2}, {2,1}, {3,0}};
a(2) = 1 + 1 + 1 + 2 + 1 + 2 + 5 + 2 + 2 + 5 = 22.
		

Crossrefs

Çf. A323224 (column 4), A323233 (row 4), A034856 (first difference), A275874.

Programs

  • Maple
    a := n -> n*(35 + 12*n + n^2)/6 + 1:
    seq(a(n), n = 0..45);
  • Mathematica
    a[n_] := n (35 + 12 n + n^2)/6 + 1;
    Table[a[n], {n, 0, 45}]

Formula

Let I(n) denote the set of all tuples of length n with elements from {0, 1, 2, 3} with sum <= 3 and C(m) denote the m-th Catalan number. Then for n > 0
a(n) = Sum_{(j1,...,jn) in I(n)} C(j1)*C(j2)*...*C(jn).
a(n) = [x^n] (3*x^3 - 8*x^2 + 5*x + 1)/(x - 1)^4.
a(n) = n! [x^n] exp(x)*(x^3 + 15*x^2 + 48*x + 6)/6.
a(n) = a(n - 1)*(n*(n + 5)*(n + 7) + 6)/(n*(n + 2)*(n + 7) - 18) for n > 0.
a(n) = A323224(n, 4).
a(n) = A275874(n+4) + 1.

A323233 Coefficients of polynomials p(n, x) generating the columns of A323224, triangle read by rows, T(n, k) for n >= 1 and k >= 0.

Original entry on oeis.org

1, 2, 2, 6, 15, 3, 24, 140, 48, 4, 120, 1750, 775, 110, 5, 720, 28644, 14550, 2670, 210, 6, 5040, 588588, 323008, 68775, 7105, 357, 7, 40320, 14592864, 8388800, 1962632, 239120, 16016, 560, 8, 362880, 423227376, 250742700, 62531532, 8502921, 680904, 32130, 828, 9
Offset: 1

Views

Author

Peter Luschny, Jan 27 2019

Keywords

Examples

			The triangle starts:
[ 1]       1;
[ 2]       2,         2;
[ 3]       6,        15,         3;
[ 4]      24,       140,        48,        4;
[ 5]     120,      1750,       775,      110,       5;
[ 6]     720,     28644,     14550,     2670,     210,      6;
[ 7]    5040,    588588,    323008,    68775,    7105,    357,     7;
[ 8]   40320,  14592864,   8388800,  1962632,  239120,  16016,   560,   8;
[ 9]  362880, 423227376, 250742700, 62531532, 8502921, 680904, 32130, 828, 9;
The first few polynomials are:
p[1](x) = 1;
p[2](x) = 2*x + 2!;
p[3](x) = 3*x*(x + 5) + 3!;
p[4](x) = 4*x*(x + 5)*(x + 7) + 4!;
p[5](x) = 5*x*(x + 5)*(x + 7)*(x + 10) + 5!;
p[6](x) = 6*x*(x + 7)*(x + 11)*(x^2 + 17*x + 62) + 6!;
p[7](x) = 7*x*(x + 6)*(x + 7)*(x + 11)*(x + 13)*(x + 14) + 7!;
		

Crossrefs

Programs

  • Mathematica
    ogf[n_] := (2/(1 + Sqrt[1 - 4 x] ))^n  x/(1 - x);
    ser[n_, len_] := CoefficientList[Series[ogf[n], {x, 0, (n + 1) len + 1}], x];
    tab[k_, len_] := Table[{n, ser[n, k + 1][[k + 1]]}, {n, 0, len - 1}];
    pol[n_] := n! InterpolatingPolynomial[tab[n, n + 1], x] // Expand;
    row[n_] := CoefficientList[pol[n], x]; Table[row[n], {n, 1, 9}]

Formula

A323224(n, k) = p(k, n)/k!.
T(n, k) = [x^k] p(n, x).
p(n, 1)/n! and p(n, -1)/n! are versions of the partial sums of the Catalan numbers.

A361952 Array read by antidiagonals: T(n,k) is the number of unlabeled posets with n elements together with a function rk mapping each element to a rank between 1 and k such that whenever v covers w in the poset then rk(v) = rk(w) + 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 8, 8, 1, 0, 1, 5, 13, 21, 17, 1, 0, 1, 6, 19, 40, 58, 38, 1, 0, 1, 7, 26, 66, 126, 172, 94, 1, 0, 1, 8, 34, 100, 228, 420, 569, 258, 1, 0, 1, 9, 43, 143, 373, 816, 1537, 2148, 815, 1, 0, 1, 10, 53, 196, 571, 1412, 3140, 6342, 9538, 3038, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

A poset is counted once for each admissible ranking function. This is an intermediate step in the computation of A361953 where each graded poset is counted exactly once.

Examples

			Array begins:
============================================
n/k| 0 1   2    3    4     5     6     7 ...
---+----------------------------------------
0  | 1 1   1    1    1     1     1     1 ...
1  | 0 1   2    3    4     5     6     7 ...
2  | 0 1   4    8   13    19    26    34 ...
3  | 0 1   8   21   40    66   100   143 ...
4  | 0 1  17   58  126   228   373   571 ...
5  | 0 1  38  172  420   816  1412  2272 ...
6  | 0 1  94  569 1537  3140  5631  9351 ...
7  | 0 1 258 2148 6342 13383 24410 41097 ...
  ...
		

Crossrefs

Columns k=0..2 are A000007, A000012, A049312.
Rows n=0..4 are A000012, A000027, A034856, A137742.
The labeled version is A361950.
Cf. A361953.

Programs

  • PARI
    \\ See Links in A361953 for program.
    { my(A=A361952tabl(7)); for(i=1, #A, print(A[i,])) }

A054254 a(n) is n plus the minimum of the a(i)*a(n-i) of the previous i = 1..n-1.

Original entry on oeis.org

0, 1, 2, 5, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273
Offset: 0

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

Comments

If in the Maple code "if n<=2 then n" were replaced by "if n<=1 then n", then the sequence would become the triangular numbers A000217. In general, if the Maple code were "if n<=k then n" for some given k > 0 then a(n) would be n if n <= k, n + k*(n-k) if k <= n <= 2k and n*(n+1)/2 - k*(k-1) if 2k <= n. - Henry Bottomley, Mar 30 2001

Examples

			a(3) = 3 + 1*2 = 5,
a(4) = 4 + 2*2 = 8 since 2*2 < 1*5,
a(5) = 5 + 1*8 = 13 since 1*8 < 2*5.
		

Programs

  • Maple
    A054254 := proc(n) local i,j; option remember; if n<=2 then n else j := 10^100; for i from 1 to n-1 do if procname(i)*procname(n-i) < j then j := procname(i)*procname(n-i); end if; end do; n+j; fi; end proc;
  • Mathematica
    Join[{0, 1, 2, 5}, LinearRecurrence[{3, -3, 1}, {8, 13, 19}, 50]] (* Jean-François Alcover, Apr 29 2023 *)

Formula

For n > 3: a(n) = (n^2 + n - 4)/2 = A034856(n-1) = A000217(n) - 2 = A000297(n-3) - A000297(n-2).
For n > 4: a(n) = a(n-1) + n.
G.f.: x*(x^2-x+1)*(x^3-x^2-1)/(x-1)^3. - R. J. Mathar, Dec 09 2009

Extensions

More specific name from R. J. Mathar, Dec 09 2009

A077593 Table by antidiagonals where T(n,k) = Sum_{i=1..n} T(floor(n/i),k-1) starting with T(n,0)=1 if n>0 and T(0,0)=0.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 5, 4, 1, 0, 1, 5, 7, 8, 5, 1, 0, 1, 6, 9, 13, 10, 6, 1, 0, 1, 7, 11, 19, 16, 14, 7, 1, 0, 1, 8, 13, 26, 23, 25, 16, 8, 1, 0, 1, 9, 15, 34, 31, 39, 28, 20, 9, 1, 0, 1, 10, 17, 43, 40, 56, 43, 38, 23, 10, 1, 0, 1, 11, 19, 53, 50, 76, 61, 63
Offset: 0

Views

Author

Henry Bottomley, Nov 08 2002

Keywords

Examples

			Rows start:
 0,0,0,0,0,0...;
 1,1,1,1,1,1...;
 1,2,3,4,5,6...;
 1,3,5,7,9,11...;
 1,4,8,13,19,26,...;
 ...
		

Crossrefs

Rows include (with offsets) A000004, A000012, A000027, A005408, A034856, A052905.
Cf. A077593.

Formula

T(n, k) = T(n-1, k) + A077592(n, k). Writing m as Sum_{i} p_i^e_i, T(n, k) = Sum_{m=1..n} Product_{i} C(k+e_i-1, e_i).

A104473 a(n) = binomial(n+2,2)*binomial(n+6,2).

Original entry on oeis.org

15, 63, 168, 360, 675, 1155, 1848, 2808, 4095, 5775, 7920, 10608, 13923, 17955, 22800, 28560, 35343, 43263, 52440, 63000, 75075, 88803, 104328, 121800, 141375, 163215, 187488, 214368, 244035, 276675, 312480, 351648, 394383, 440895, 491400, 546120, 605283, 669123
Offset: 0

Views

Author

Zerinvary Lajos, Apr 18 2005

Keywords

Examples

			a(0) = C(0+2,2)*C(0+6,2) = C(2,2)*C(6,2) = 1*15 = 155.
a(6) = 1*3*5 + 2*4*6 + 3*5*7 + 4*6*8 + 5*7*9 + 6*8*10 + 7*9*11 = 1848.
		

Crossrefs

Subsequence of A085780.

Programs

  • Magma
    [Binomial(n+2, 2)*Binomial(n+6, 2): n in [0..50]]; // Vincenzo Librandi, Apr 28 2014
    
  • Mathematica
    f[n_] := Binomial[n + 2, 2] Binomial[n + 6, 2]; Table[f[n], {n,0,40}] (* Robert G. Wilson v, Apr 20 2005 *)
    CoefficientList[Series[3 (5-4*x+x^2)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Apr 28 2014 *)
  • PARI
    a(n)=binomial(n+2,2)*binomial(n+6,2) \\ Charles R Greathouse IV, Jun 07 2013
    
  • SageMath
    def A104473(n): return binomial(n+2,2)*binomial(n+6,2)
    print([A104473(n) for n in range(51)]) # G. C. Greubel, Mar 05 2025

Formula

a(n) = (1/4)*(n+1)*(n+2)*(n+5)*(n+6).
a(n) = A034856(n+2)^2 - 1. - J. M. Bergot, Dec 14 2010
G.f.: 3*(5-4*x+x^2)/(1-x)^5. - Colin Barker, Sep 21 2012
a(n) = Sum_{i=1..n+1} i*(i+2)*(i+4). - Bruno Berselli, Apr 28 2014
a(n) = A000217(n)*A000217(n+4) = 3*A033275(n+4). - R. J. Mathar, Nov 29 2015
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 43/450.
Sum_{n>=0} (-1)^n/a(n) = 16*log(2)/15 - 154/225. (End)
From G. C. Greubel, Mar 05 2025: (Start)
a(n) = 90*A000579(n+6)/A000279(n+3).
E.g.f.: (1/4)*(60 + 192*x + 114*x^2 + 20*x^3 + x^4)*exp(x). (End)

A111694 a(1) = 1+2-3 = 0, a(2) = 4+5+6-7 = 8, a(3) = 8+9+10+11-12 = 26, a(4) = 13+14+15+16+17-18 = 57, ...

Original entry on oeis.org

0, 8, 26, 57, 104, 170, 258, 371, 512, 684, 890, 1133, 1416, 1742, 2114, 2535, 3008, 3536, 4122, 4769, 5480, 6258, 7106, 8027, 9024, 10100, 11258, 12501, 13832, 15254, 16770, 18383, 20096, 21912, 23834, 25865, 28008, 30266, 32642, 35139, 37760
Offset: 1

Views

Author

Amarnath Murthy, Aug 17 2005

Keywords

Crossrefs

Cf. A034856.

Programs

  • Magma
    [(n^3 + 4*n^2 - 3*n - 2)/2: n in [1..60]]; // Vincenzo Librandi, May 21 2011
  • Maple
    seq(sum(j,j=binomial(n+1,2)+n-1..binomial(n+2,2)+n-2) - binomial(n+2,2)-n+1,n=1..50); # Emeric Deutsch, Aug 27 2005
  • Mathematica
    Table[(n^3 + 4n^2 - 3n - 2)/2, {n, 41}] (* Robert G. Wilson v, Aug 27 2005 *)

Formula

a(n) = (n-1)*(n^2 + 5*n + 2)/2.
G.f.: x^2*(x-2)*(x-4)/(1-x)^4. - Colin Barker, Mar 18 2012
a(n) = (n-1)*A034856(n+1). - R. J. Mathar, Aug 22 2016

Extensions

Edited and extended by Emeric Deutsch and Robert G. Wilson v, Aug 27 2005

A118976 Triangle read by rows: T(n,k) = binomial(n-1,k-1)*binomial(n,k-1)/k + binomial(n-1,k)*binomial(n,k)/(k+1) (1 <= k <= n). In other words, to each entry of the Narayana triangle (A001263) add the entry on its right.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 7, 12, 7, 1, 11, 30, 30, 11, 1, 16, 65, 100, 65, 16, 1, 22, 126, 280, 280, 126, 22, 1, 29, 224, 686, 980, 686, 224, 29, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1, 46, 585, 3060, 7812, 10584, 7812, 3060, 585, 46, 1, 56, 880, 5775, 18810, 33264, 33264, 18810, 5775, 880, 56, 1
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

Sum of entries in row n = 2*Cat(n)-1, where Cat(n) are the Catalan numbers (A000108).
Row sums = A131428 starting (1, 3, 9, 27, 83, ...). - Gary W. Adamson, Aug 31 2007

Examples

			First few rows of the triangle:
   1;
   2,  1;
   4,  4,   1;
   7, 12,   7,  1;
  11, 30,  30, 11,  1;
  16, 65, 100, 65, 16, 1;
...
Row 4 of the triangle = (7, 12, 7, 1), derived from row 4 of the Narayana triangle, (1, 6, 6, 1): = ((1+6), (6+6), (6+1), (1)).
		

Crossrefs

Programs

  • GAP
    B:=Binomial; Flat(List([1..12], n-> List([1..n], k-> B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1) ))); # G. C. Greubel, Aug 12 2019
  • Magma
    B:=Binomial; [B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 12 2019
    
  • Maple
    T:=(n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k+binomial(n-1,k) *binomial(n,k)/ (k+1): for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
    # Alternatively:
    gf := 1 - ((1/2)*(x + 1)*(sqrt((x*y + y - 1)^2 - 4*y^2*x) + x*y + y - 1))/(y*x):
    sery := series(gf, y, 10): coeffy := n -> expand(coeff(sery, y, n)):
    seq(print(seq(coeff(coeffy(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Oct 21 2020
  • Mathematica
    With[{B=Binomial}, Table[B[n-1,k-1]*B[n,k-1]/k + B[n-1,k]*B[n,k]/(k+1), {n,12}, {k,n}]//Flatten] (* G. C. Greubel, Aug 12 2019 *)
  • PARI
    T(n,k) = b=binomial; b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1);
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 12 2019
    
  • Sage
    def T(n, k):
        b=binomial
        return b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Aug 12 2019
    

Formula

G.f.: A001263(x, y)*(x + x*y) + x*y. - Vladimir Kruchinin, Oct 21 2020

Extensions

Edited by N. J. A. Sloane, Nov 29 2006
Previous Showing 61-70 of 98 results. Next