cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A079122 Number of ways to partition 2*n into distinct positive integers not greater than n.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 5, 8, 13, 21, 31, 46, 67, 95, 134, 186, 253, 343, 461, 611, 806, 1055, 1369, 1768, 2270, 2896, 3678, 4649, 5847, 7325, 9141, 11359, 14069, 17367, 21363, 26202, 32042, 39068, 47512, 57632, 69728, 84167, 101365, 121801, 146053, 174777
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 27 2002

Keywords

Examples

			a(4)=1 [1+3+4=2*4]; a(5)=3 [1+2+3+4=1+4+5=2+3+5=2*5].
		

Crossrefs

Programs

  • Haskell
    a079122 n = p [1..n] (2 * n) where
       p _  0     = 1
       p [] _     = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 16 2012
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) + `if`(i>n, 0, b(n-i, i-1))))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jan 18 2013
  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@ #] == 1 &]; Table[d[n], {n, 1, 12}]
    TableForm[%]
    f[n_] := Length[Select[d[2 n], First[#] <= n &]]
    Table[f[n], {n, 1, 20}]  (* A079122 *)
    (* Clark Kimberling, Mar 13 2012 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
    Table[SeriesCoefficient[Product[1 + x^(k/2), {k, 1, n}], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Jan 16 2024 *)

Formula

a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m
Coefficient of x^(2*n) in Product_{k=1..n} (1+x^k). - Vladeta Jovovic, Aug 07 2003
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 22 2015

A292042 G.f.: Re((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -3, -4, -3, -3, -1, -1, 2, 3, 7, 9, 14, 16, 23, 26, 33, 37, 45, 48, 57, 60, 68, 70, 77, 76, 82, 78, 80, 72, 70, 55, 48, 26, 11, -19, -42, -84, -116, -169, -213, -278, -333, -413, -479, -572, -651, -757, -846, -965, -1062
Offset: 0

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
		

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^n*x^(n*(2*n+1))/(mul(1 - x^k,k = 1..2*n)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
  • Mathematica
    Re[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)

Formula

( i*x; x)_inf is the g.f. for a(n) + i*A292043(n).
(-i*x; x)_inf is the g.f. for a(n) + i*A292052(n).
a(n)^2 + A292043(n)^2 = A278420(n). - Vaclav Kotesovec, Sep 08 2017
From Peter Bala, Jan 15 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k). (End)

A079126 Triangle T(n,k) of numbers of partitions of n into distinct positive integers <= k, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 3, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 0, 2, 3, 4, 5, 0, 0, 0, 0, 1, 3, 4, 5, 6, 0, 0, 0, 0, 1, 3, 5, 6, 7, 8, 0, 0, 0, 0, 1, 3, 5, 7, 8, 9, 10, 0, 0, 0, 0, 0, 2, 5, 7, 9, 10, 11, 12, 0, 0, 0, 0, 0, 2, 5, 8, 10, 12, 13, 14, 15, 0, 0, 0, 0, 0, 1, 4, 8, 11, 13, 15, 16, 17, 18
Offset: 0

Author

Reinhard Zumkeller, Dec 27 2002

Keywords

Comments

T(n,n) = A000009(n), right side of the triangle;
T(n,k)=0 for n>0 and k < A002024(n); T(prime(n),n) = A067953(n) for n>0.

Examples

			The seven partitions of n=5 are {5}, {4,1}, {3,2}, {3,1,1}, {2,2,1}, {2,1,1,1} and {1,1,1,1,1}. Only two of them ({4,1} and {3,2}) have distinct parts <= 4, so T(5,4) = 2.
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 1;
0, 0, 1, 2;
0, 0, 0, 1 ,2;
0, 0, 0, 1, 2, 3;
0, 0, 0, 1, 2, 3, 4;
0, 0, 0, 0, 2, 3, 4, 5;
0, 0, 0, 0, 1, 3, 4, 5,  6;
0, 0, 0, 0, 1, 3, 5, 6,  7,  8;
0, 0, 0, 0, 1, 3, 5, 7,  8,  9, 10;
0, 0, 0, 0, 0, 2, 5, 7,  9, 10, 11, 12;
0, 0, 0, 0, 0, 2, 5, 8, 10, 12, 13, 14, 15; ...
		

Crossrefs

Differs from A026840 in having extra zeros at the ends of the rows.

Programs

  • Maple
    T:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, T(n, i-1)+`if`(i>n, 0, T(n-i, i-1))))
        end:
    seq(seq(T(n,k), k=0..n), n=0..20);  # Alois P. Heinz, May 11 2015
  • Mathematica
    T[n_, i_] := T[n, i] = If[n==0, 1, If[i<1, 0, T[n, i-1] + If[i>n, 0, T[n-i, i-1]]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)

Formula

T(n,k) = b(0,n,k), where b(m,n,k) = 1+sum(b(i,j,k): m
T(n,k) = coefficient of x^n in product_{i=1..k} (1+x^i). - Vladeta Jovovic, Aug 07 2003

A282893 The difference between the number of partitions of 2n into odd parts (A000009) and the number of partitions of 2n into even parts (A035363).

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 7, 10, 16, 22, 33, 45, 64, 87, 120, 159, 215, 283, 374, 486, 634, 814, 1049, 1335, 1700, 2146, 2708, 3390, 4243, 5276, 6552, 8095, 9989, 12266, 15044, 18375, 22409, 27235, 33049, 39974, 48281, 58148, 69923, 83871, 100452, 120027, 143214, 170515, 202731, 240567, 285073, 337195
Offset: 0

Author

Robert G. Wilson v, Feb 24 2017

Keywords

Comments

The even bisection of A282892. The other bisection is A078408.

Examples

			G.f. = x^3 + x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 10*x^8 + 16*x^9 + 22*x^10 + 33*x^11 + ...
		

Programs

  • Maple
    with(numtheory):
    b:= proc(n, t) option remember; `if`(n=0, 1, add(add(`if`(
          (d+t)::odd, d, 0), d=divisors(j))*b(n-j, t), j=1..n)/n)
        end:
    a:= n-> b(2*n, 0) -b(2*n, 1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 24 2017
  • Mathematica
    f[n_] := Length[ IntegerPartitions[n, All, 2Range[n] -1]] - Length[ IntegerPartitions[n, All, 2 Range[n]]]; Array[ f[2#] &, 52]
    a[ n_] := SeriesCoefficient[ Sum[ Sign @ SquaresR[1, 16 k + 1] x^k, {k, n}] / QPochhammer[x], {x, 0, n}]; (* Michael Somos, Feb 24 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=1, n, issquare(16*k + 1)*x^k, A) / eta(x + A), n))}; /* Michael Somos, Feb 24 2017 */

Formula

a(n) = A282892(2n).
Expansion of (f(x^3, x^5) - 1) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Feb 24 2017
a(n) = A035294(n) - A000041(n). - Michael Somos, Feb 24 2017

A343942 Number of even-length strict integer partitions of 2n+1.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 52, 71, 96, 128, 170, 224, 292, 380, 491, 630, 805, 1024, 1295, 1632, 2049, 2560, 3189, 3959, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29249, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937, 172928
Offset: 0

Author

Gus Wiseman, Jun 09 2021

Keywords

Comments

By conjugation, also the number of integer partitions of 2n+1 covering an initial interval of positive integers with greatest part even.

Examples

			The a(1) = 1 through a(7) = 13 strict partitions:
  (2,1)  (3,2)  (4,3)  (5,4)  (6,5)      (7,6)      (8,7)
         (4,1)  (5,2)  (6,3)  (7,4)      (8,5)      (9,6)
                (6,1)  (7,2)  (8,3)      (9,4)      (10,5)
                       (8,1)  (9,2)      (10,3)     (11,4)
                              (10,1)     (11,2)     (12,3)
                              (5,3,2,1)  (12,1)     (13,2)
                                         (5,4,3,1)  (14,1)
                                         (6,4,2,1)  (6,4,3,2)
                                         (7,3,2,1)  (6,5,3,1)
                                                    (7,4,3,1)
                                                    (7,5,2,1)
                                                    (8,4,2,1)
                                                    (9,3,2,1)
		

Crossrefs

Ranked by A005117 (strict), A028260 (even length), and A300063 (odd sum).
Odd bisection of A067661 (non-strict: A027187).
The non-strict version is A236914.
The opposite type of strict partition (odd length and even sum) is A344650.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&]],{n,0,15}]

Formula

The Heinz numbers are A005117 /\ A028260 /\ A300063.

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A385088 G.f.: Sum_{k>=0} x^k * Product_{j=1..2*k} (1 + x^j)/(1 - x^j).

Original entry on oeis.org

1, 1, 3, 7, 13, 23, 39, 63, 101, 159, 243, 367, 547, 801, 1161, 1665, 2359, 3315, 4621, 6385, 8761, 11941, 16165, 21757, 29121, 38761, 51337, 67673, 88793, 116009, 150949, 195629, 252595, 324987, 416675, 532483, 678333, 861489, 1090913, 1377553, 1734761, 2178883
Offset: 0

Author

Vaclav Kotesovec, Jun 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k*Product[(1+x^j)/(1-x^j), {j, 1, 2*k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 50; p = 1; q = 1; s = 1; Do[p = Expand[p*(1 - x^(2*k))*(1 - x^(2*k - 1))]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; q = Expand[q*(1 + x^(2*k))*(1 + x^(2*k - 1))]; q = Take[q, Min[nmax + 1, Exponent[q, x] + 1, Length[q]]]; s += x^k*q/p;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n)) / (16 * n^(3/4)).

A249914 Number of partitions of 4n with equal sums of odd and even parts.

Original entry on oeis.org

1, 1, 4, 12, 30, 70, 165, 330, 704, 1380, 2688, 4984, 9394, 16665, 29970, 52096, 90090, 152064, 257180, 423360, 697851, 1129392, 1819632, 2891520, 4583250, 7162364, 11161752, 17211180, 26427544, 40208520, 60971520, 91641748, 137290956, 204198876, 302530560
Offset: 0

Author

Alois P. Heinz, Feb 11 2015

Keywords

Examples

			a(0) = 1: [], the empty partition.
a(1) = 1: [2,1,1].
a(2) = 4: [4,3,1], [4,1,1,1,1], [3,2,2,1], [2,2,1,1,1,1].
a(3) = 12: [6,5,1], [6,3,3], [6,3,1,1,1], [6,1,1,1,1,1,1], [5,4,2,1], [5,2,2,2,1], [4,3,3,2], [4,3,2,1,1,1], [4,2,1,1,1,1,1,1], [3,3,2,2,2], [3,2,2,2,1,1,1], [2,2,2,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> combinat[numbpart](n) *b(2*n, 2*n-1):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]]];
    a[n_] := PartitionsP[n] b[2n, 2n-1];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)

Formula

a(n) = A000041(n) * A035294(n) = A000041(n) * A000009(2n).
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*6^(3/4)*n^(7/4)). - Vaclav Kotesovec, Dec 11 2020

A078406 Number of ways to partition 4*n into distinct positive integers.

Original entry on oeis.org

1, 2, 6, 15, 32, 64, 122, 222, 390, 668, 1113, 1816, 2910, 4582, 7108, 10880, 16444, 24576, 36352, 53250, 77312, 111322, 159046, 225585, 317788, 444793, 618784, 855906, 1177438, 1611388, 2194432, 2974400, 4013544, 5392550, 7215644
Offset: 0

Author

N. J. A. Sloane, Dec 27 2002

Keywords

Crossrefs

Bisection of A035294. Cf. A078407.
a(n) = t(4*n, 0), t as defined in A079211.

Programs

  • Mathematica
    Table[PartitionsQ[4n], {n, 0, 40}]

Extensions

More terms from Don Reble, Jan 05 2003

A078410 Number of ways to partition 4*n+3 into distinct positive integers.

Original entry on oeis.org

2, 5, 12, 27, 54, 104, 192, 340, 585, 982, 1610, 2590, 4097, 6378, 9792, 14848, 22250, 32992, 48446, 70488, 101698, 145578, 206848, 291874, 409174, 570078, 789640, 1087744, 1490528, 2032290, 2757826, 3725410, 5010688, 6711480, 8953856
Offset: 0

Author

N. J. A. Sloane, Dec 27 2002

Keywords

Crossrefs

Bisection of A078408. Cf. A035294, A000009, A078409.

Programs

  • Mathematica
    PartitionsQ[4*Range[0,40]+3] (* Harvey P. Dale, Sep 23 2013 *)

Formula

a(n) = t(4*n+3, 0), t as defined in A079211.

Extensions

More terms from Reinhard Zumkeller, Dec 28 2002

A262987 Expansion of f(-x, -x^5) * f(x^3, x^5) / f(-x, -x^2)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 3, 6, 11, 19, 33, 53, 86, 134, 205, 309, 460, 672, 974, 1394, 1975, 2773, 3863, 5333, 7316, 9964, 13484, 18140, 24269, 32288, 42751, 56331, 73888, 96503, 125529, 162635, 209939, 270027, 346123, 442213, 563205, 715110, 905361, 1142998, 1439098, 1807175
Offset: 0

Author

Michael Somos, Oct 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 19*x^5 + 33*x^6 + 53*x^7 + ...
G.f. = q^5 + q^21 + 3*q^37 + 6*q^53 + 11*q^69 + 19*q^85 + 33*q^101 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ x^(-5/8) EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, 2 n}];
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; a:= CoefficientList[Series[f[-x, -x^5]*f[x^3, x^5]/f[-x, -x^2]^2, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 31 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};

Formula

Expansion of (psi(x^6) / psi(x) + psi(x^6) / psi(-x)) / 2 in powers of x^2 where psi() is a Ramanujan theta function.
Euler transform of period 48 sequence [1, 2, 3, 2, 2, 0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 3, 1, 1, 0, 1, 1, 3, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 0, 2, 2, 3, 2, 1, 0, ...].
a(n) = A132217(2*n) = A262160(2*n).
Convolution product of A035294 and A097451.
a(n) ~ exp(sqrt(n)*Pi)/(8*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
Previous Showing 11-20 of 26 results. Next