A079122 Number of ways to partition 2*n into distinct positive integers not greater than n.
1, 0, 0, 1, 1, 3, 5, 8, 13, 21, 31, 46, 67, 95, 134, 186, 253, 343, 461, 611, 806, 1055, 1369, 1768, 2270, 2896, 3678, 4649, 5847, 7325, 9141, 11359, 14069, 17367, 21363, 26202, 32042, 39068, 47512, 57632, 69728, 84167, 101365, 121801, 146053, 174777
Offset: 0
Keywords
Examples
a(4)=1 [1+3+4=2*4]; a(5)=3 [1+2+3+4=1+4+5=2+3+5=2*5].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..80 from Reinhard Zumkeller)
Programs
-
Haskell
a079122 n = p [1..n] (2 * n) where p _ 0 = 1 p [] _ = 0 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m -- Reinhard Zumkeller, Mar 16 2012
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) + `if`(i>n, 0, b(n-i, i-1)))) end: a:= n-> b(2*n, n): seq(a(n), n=0..80); # Alois P. Heinz, Jan 18 2013
-
Mathematica
d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@ #] == 1 &]; Table[d[n], {n, 1, 12}] TableForm[%] f[n_] := Length[Select[d[2 n], First[#] <= n &]] Table[f[n], {n, 1, 20}] (* A079122 *) (* Clark Kimberling, Mar 13 2012 *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *) Table[SeriesCoefficient[Product[1 + x^(k/2), {k, 1, n}], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Jan 16 2024 *)
Formula
a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m
Coefficient of x^(2*n) in Product_{k=1..n} (1+x^k). - Vladeta Jovovic, Aug 07 2003
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 22 2015
A292042 G.f.: Re((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -3, -4, -3, -3, -1, -1, 2, 3, 7, 9, 14, 16, 23, 26, 33, 37, 45, 48, 57, 60, 68, 70, 77, 76, 82, 78, 80, 72, 70, 55, 48, 26, 11, -19, -42, -84, -116, -169, -213, -278, -333, -413, -479, -572, -651, -757, -846, -965, -1062
Offset: 0
Keywords
Examples
Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
Programs
-
Maple
N:= 100: S := convert(series( add( (-1)^n*x^(n*(2*n+1))/(mul(1 - x^k,k = 1..2*n)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom): seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
-
Mathematica
Re[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)
Formula
( i*x; x)_inf is the g.f. for a(n) + i*A292043(n).
(-i*x; x)_inf is the g.f. for a(n) + i*A292052(n).
From Peter Bala, Jan 15 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k). (End)
A079126 Triangle T(n,k) of numbers of partitions of n into distinct positive integers <= k, 0<=k<=n.
1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 3, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 0, 2, 3, 4, 5, 0, 0, 0, 0, 1, 3, 4, 5, 6, 0, 0, 0, 0, 1, 3, 5, 6, 7, 8, 0, 0, 0, 0, 1, 3, 5, 7, 8, 9, 10, 0, 0, 0, 0, 0, 2, 5, 7, 9, 10, 11, 12, 0, 0, 0, 0, 0, 2, 5, 8, 10, 12, 13, 14, 15, 0, 0, 0, 0, 0, 1, 4, 8, 11, 13, 15, 16, 17, 18
Offset: 0
Examples
The seven partitions of n=5 are {5}, {4,1}, {3,2}, {3,1,1}, {2,2,1}, {2,1,1,1} and {1,1,1,1,1}. Only two of them ({4,1} and {3,2}) have distinct parts <= 4, so T(5,4) = 2. Triangle T(n,k) begins: 1; 0, 1; 0, 0, 1; 0, 0, 1, 2; 0, 0, 0, 1 ,2; 0, 0, 0, 1, 2, 3; 0, 0, 0, 1, 2, 3, 4; 0, 0, 0, 0, 2, 3, 4, 5; 0, 0, 0, 0, 1, 3, 4, 5, 6; 0, 0, 0, 0, 1, 3, 5, 6, 7, 8; 0, 0, 0, 0, 1, 3, 5, 7, 8, 9, 10; 0, 0, 0, 0, 0, 2, 5, 7, 9, 10, 11, 12; 0, 0, 0, 0, 0, 2, 5, 8, 10, 12, 13, 14, 15; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Eric Weisstein's World of Mathematics, Partition Function Q.
Crossrefs
Programs
-
Maple
T:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, T(n, i-1)+`if`(i>n, 0, T(n-i, i-1)))) end: seq(seq(T(n,k), k=0..n), n=0..20); # Alois P. Heinz, May 11 2015
-
Mathematica
T[n_, i_] := T[n, i] = If[n==0, 1, If[i<1, 0, T[n, i-1] + If[i>n, 0, T[n-i, i-1]]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
Formula
T(n,k) = b(0,n,k), where b(m,n,k) = 1+sum(b(i,j,k): m
T(n,k) = coefficient of x^n in product_{i=1..k} (1+x^i). - Vladeta Jovovic, Aug 07 2003
A282893 The difference between the number of partitions of 2n into odd parts (A000009) and the number of partitions of 2n into even parts (A035363).
0, 0, 0, 1, 1, 3, 4, 7, 10, 16, 22, 33, 45, 64, 87, 120, 159, 215, 283, 374, 486, 634, 814, 1049, 1335, 1700, 2146, 2708, 3390, 4243, 5276, 6552, 8095, 9989, 12266, 15044, 18375, 22409, 27235, 33049, 39974, 48281, 58148, 69923, 83871, 100452, 120027, 143214, 170515, 202731, 240567, 285073, 337195
Offset: 0
Keywords
Examples
G.f. = x^3 + x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 10*x^8 + 16*x^9 + 22*x^10 + 33*x^11 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
with(numtheory): b:= proc(n, t) option remember; `if`(n=0, 1, add(add(`if`( (d+t)::odd, d, 0), d=divisors(j))*b(n-j, t), j=1..n)/n) end: a:= n-> b(2*n, 0) -b(2*n, 1): seq(a(n), n=0..80); # Alois P. Heinz, Feb 24 2017
-
Mathematica
f[n_] := Length[ IntegerPartitions[n, All, 2Range[n] -1]] - Length[ IntegerPartitions[n, All, 2 Range[n]]]; Array[ f[2#] &, 52] a[ n_] := SeriesCoefficient[ Sum[ Sign @ SquaresR[1, 16 k + 1] x^k, {k, n}] / QPochhammer[x], {x, 0, n}]; (* Michael Somos, Feb 24 2017 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=1, n, issquare(16*k + 1)*x^k, A) / eta(x + A), n))}; /* Michael Somos, Feb 24 2017 */
Formula
a(n) = A282892(2n).
Expansion of (f(x^3, x^5) - 1) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Feb 24 2017
A343942 Number of even-length strict integer partitions of 2n+1.
0, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 52, 71, 96, 128, 170, 224, 292, 380, 491, 630, 805, 1024, 1295, 1632, 2049, 2560, 3189, 3959, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29249, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937, 172928
Offset: 0
Keywords
Comments
By conjugation, also the number of integer partitions of 2n+1 covering an initial interval of positive integers with greatest part even.
Examples
The a(1) = 1 through a(7) = 13 strict partitions: (2,1) (3,2) (4,3) (5,4) (6,5) (7,6) (8,7) (4,1) (5,2) (6,3) (7,4) (8,5) (9,6) (6,1) (7,2) (8,3) (9,4) (10,5) (8,1) (9,2) (10,3) (11,4) (10,1) (11,2) (12,3) (5,3,2,1) (12,1) (13,2) (5,4,3,1) (14,1) (6,4,2,1) (6,4,3,2) (7,3,2,1) (6,5,3,1) (7,4,3,1) (7,5,2,1) (8,4,2,1) (9,3,2,1)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&]],{n,0,15}]
Extensions
More terms from Bert Dobbelaere, Jun 12 2021
A385088 G.f.: Sum_{k>=0} x^k * Product_{j=1..2*k} (1 + x^j)/(1 - x^j).
1, 1, 3, 7, 13, 23, 39, 63, 101, 159, 243, 367, 547, 801, 1161, 1665, 2359, 3315, 4621, 6385, 8761, 11941, 16165, 21757, 29121, 38761, 51337, 67673, 88793, 116009, 150949, 195629, 252595, 324987, 416675, 532483, 678333, 861489, 1090913, 1377553, 1734761, 2178883
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Sum[x^k*Product[(1+x^j)/(1-x^j), {j, 1, 2*k}], {k, 0, nmax}], {x, 0, nmax}], x] nmax = 50; p = 1; q = 1; s = 1; Do[p = Expand[p*(1 - x^(2*k))*(1 - x^(2*k - 1))]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; q = Expand[q*(1 + x^(2*k))*(1 + x^(2*k - 1))]; q = Take[q, Min[nmax + 1, Exponent[q, x] + 1, Length[q]]]; s += x^k*q/p;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x]
Formula
a(n) ~ exp(Pi*sqrt(n)) / (16 * n^(3/4)).
A249914 Number of partitions of 4n with equal sums of odd and even parts.
1, 1, 4, 12, 30, 70, 165, 330, 704, 1380, 2688, 4984, 9394, 16665, 29970, 52096, 90090, 152064, 257180, 423360, 697851, 1129392, 1819632, 2891520, 4583250, 7162364, 11161752, 17211180, 26427544, 40208520, 60971520, 91641748, 137290956, 204198876, 302530560
Offset: 0
Keywords
Examples
a(0) = 1: [], the empty partition. a(1) = 1: [2,1,1]. a(2) = 4: [4,3,1], [4,1,1,1,1], [3,2,2,1], [2,2,1,1,1,1]. a(3) = 12: [6,5,1], [6,3,3], [6,3,1,1,1], [6,1,1,1,1,1,1], [5,4,2,1], [5,2,2,2,1], [4,3,3,2], [4,3,2,1,1,1], [4,2,1,1,1,1,1,1], [3,3,2,2,2], [3,2,2,2,1,1,1], [2,2,2,1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> combinat[numbpart](n) *b(2*n, 2*n-1): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]]]; a[n_] := PartitionsP[n] b[2n, 2n-1]; a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
Formula
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*6^(3/4)*n^(7/4)). - Vaclav Kotesovec, Dec 11 2020
A078406 Number of ways to partition 4*n into distinct positive integers.
1, 2, 6, 15, 32, 64, 122, 222, 390, 668, 1113, 1816, 2910, 4582, 7108, 10880, 16444, 24576, 36352, 53250, 77312, 111322, 159046, 225585, 317788, 444793, 618784, 855906, 1177438, 1611388, 2194432, 2974400, 4013544, 5392550, 7215644
Offset: 0
Programs
-
Mathematica
Table[PartitionsQ[4n], {n, 0, 40}]
Extensions
More terms from Don Reble, Jan 05 2003
A078410 Number of ways to partition 4*n+3 into distinct positive integers.
2, 5, 12, 27, 54, 104, 192, 340, 585, 982, 1610, 2590, 4097, 6378, 9792, 14848, 22250, 32992, 48446, 70488, 101698, 145578, 206848, 291874, 409174, 570078, 789640, 1087744, 1490528, 2032290, 2757826, 3725410, 5010688, 6711480, 8953856
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
PartitionsQ[4*Range[0,40]+3] (* Harvey P. Dale, Sep 23 2013 *)
Formula
a(n) = t(4*n+3, 0), t as defined in A079211.
Extensions
More terms from Reinhard Zumkeller, Dec 28 2002
A262987 Expansion of f(-x, -x^5) * f(x^3, x^5) / f(-x, -x^2)^2 in powers of x where f(, ) is Ramanujan's general theta function.
1, 1, 3, 6, 11, 19, 33, 53, 86, 134, 205, 309, 460, 672, 974, 1394, 1975, 2773, 3863, 5333, 7316, 9964, 13484, 18140, 24269, 32288, 42751, 56331, 73888, 96503, 125529, 162635, 209939, 270027, 346123, 442213, 563205, 715110, 905361, 1142998, 1439098, 1807175
Offset: 0
Keywords
Comments
Examples
G.f. = 1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 19*x^5 + 33*x^6 + 53*x^7 + ... G.f. = q^5 + q^21 + 3*q^37 + 6*q^53 + 11*q^69 + 19*q^85 + 33*q^101 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ x^(-5/8) EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, 2 n}]; f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; a:= CoefficientList[Series[f[-x, -x^5]*f[x^3, x^5]/f[-x, -x^2]^2, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 31 2018 *)
-
PARI
{a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};
Formula
Expansion of (psi(x^6) / psi(x) + psi(x^6) / psi(-x)) / 2 in powers of x^2 where psi() is a Ramanujan theta function.
Euler transform of period 48 sequence [1, 2, 3, 2, 2, 0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 3, 1, 1, 0, 1, 1, 3, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 0, 2, 2, 3, 2, 1, 0, ...].
a(n) ~ exp(sqrt(n)*Pi)/(8*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
Comments