cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 60 results. Next

A344300 Expansion of Sum_{k>=1} (-1)^(k+1) * k^2 * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, -3, 1, 1, 1, -3, 10, 1, 1, -3, 1, 1, 1, -19, 1, 10, 1, -3, 1, 1, 1, -3, 26, 1, 10, -3, 1, 1, 1, -19, 1, 1, 1, -30, 1, 1, 1, -3, 1, 1, 1, -3, 10, 1, 1, -19, 50, 26, 1, -3, 1, 10, 1, -3, 1, 1, 1, -3, 1, 1, 10, -83, 1, 1, 1, -3, 1, 1, 1, -30, 1, 1, 26, -3, 1, 1, 1, -19
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Comments

Excess of sum of odd squares dividing n over sum of even squares dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) # &, IntegerQ[#^(1/2)] &], {n, 1, 80}]
    f[p_, e_] := (p^(2*Floor[e/2] + 2) - 1)/(p^2 - 1); f[2, e_] := 2 - (2^(2*Floor[e/2] + 2) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), (-1)^((d%2)+1)*d)); \\ Michel Marcus, Aug 22 2021
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1]==2, 2 - (2^(2*floor(f[i,2]/2) + 2) - 1)/3, (f[i,1]^(2*floor(f[i,2]/2) + 2) - 1)/(f[i,1]^2 - 1)));} \\ Amiram Eldar, Nov 15 2022

Formula

Multiplicative with a(2^e) = 2 - (2^(2*floor(e/2) + 2) - 1)/3, and a(p^e) = (p^(2*floor(e/2) + 2) - 1)/(p^2 - 1) for p > 2. - Amiram Eldar, Nov 15 2022

A069291 Number of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

Terms 1, 2, 3, ... occurs for the first time at 1, 16, 108, 288, 1296, 3600, 10368, 14400, ... - Antti Karttunen, Nov 20 2017

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 120}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069291(n) = sumdiv(n, d, (issquare(d)&&((d^2)<=n))); \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Antti Karttunen, Nov 20 2017

A069293 Sum of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 5, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 105}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069293(n) = sumdiv(n, d, (issquare(d)&&((d^2)<=n))*d); \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} k^2 * x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Antti Karttunen, Nov 20 2017

A309125 a(n) = n + 2^2 * floor(n/2^2) + 3^2 * floor(n/3^2) + 4^2 * floor(n/4^2) + ...

Original entry on oeis.org

1, 2, 3, 8, 9, 10, 11, 16, 26, 27, 28, 33, 34, 35, 36, 57, 58, 68, 69, 74, 75, 76, 77, 82, 108, 109, 119, 124, 125, 126, 127, 148, 149, 150, 151, 201, 202, 203, 204, 209, 210, 211, 212, 217, 227, 228, 229, 250, 300, 326, 327, 332, 333, 343, 344, 349, 350, 351, 352, 357, 358, 359, 369, 454, 455, 456
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 13 2019

Keywords

Comments

Partial sums of A035316.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^2 Floor[n/k^2], {k, 1, n}], {n, 1, 66}]
    nmax = 66; CoefficientList[Series[1/(1 - x) Sum[k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, k^2*(n\k^2)); \\ Seiichi Manyama, Aug 30 2021

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} k^2 * x^(k^2)/(1 - x^(k^2)).
a(n) ~ zeta(3/2)*n^(3/2)/3 - n/2. - Vaclav Kotesovec, Aug 30 2021

A385006 The sum of the biquadratefree divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 15, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 15, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 60, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 15, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A365682 and A366992 at n = 32.
The number of these divisors is A252505(n), and the largest of them is A058035(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), A385005 (cubefull), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^Min[e+1, 4] - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^min(e+1, 4) - 1)/(p - 1));}

Formula

Multiplicative with a(p^e) = (p^min(e+1, 4) - 1)/(p - 1).
In general, the sum of the k-free (numbers that are not divisible by a k-th power larger than 1) divisors of n is multiplicative with a(p^e) = (p^min(e+1, k) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(s-1) /zeta(4*s-4).
In general, the sum of the k-free divisors of n has Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(k*s-k).
Sum_{k=1..n} a(k) ~ (15/(2*Pi^2)) * n^2.
In general, the sum of the k-free divisors of n has an average order (Pi^2/(12*zeta(k))) * n^2.

A300853 L.g.f.: log(Product_{k>=1} (1 + x^(k^2))) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, -1, 1, 3, 1, -1, 1, -5, 10, -1, 1, 3, 1, -1, 1, 11, 1, -10, 1, 3, 1, -1, 1, -5, 26, -1, 10, 3, 1, -1, 1, -21, 1, -1, 1, 30, 1, -1, 1, -5, 1, -1, 1, 3, 10, -1, 1, 11, 50, -26, 1, 3, 1, -10, 1, -5, 1, -1, 1, 3, 1, -1, 10, 43, 1, -1, 1, 3, 1, -1, 1, -50, 1, -1, 26, 3, 1, -1, 1, 11, 91, -1, 1, 3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 13 2018

Keywords

Examples

			L.g.f.: L(x) = x - x^2/2 + x^3/3 + 3*x^4/4 + x^5/5 - x^6/6 + x^7/7 - 5*x^8/8 + 10*x^9/9 - x^10/10 + ...
exp(L(x)) = 1 + x + x^4 + x^5 + x^9 + x^10 + x^13 + x^14 + ... + A033461(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; Rest[CoefficientList[Series[Log[Product[(1 + x^k^2), {k, 1, Floor[nmax^(1/2) + 1]}]], {x, 0, nmax}],x] Range[0, nmax]]
    nmax = 85; Rest[CoefficientList[Series[Sum[k^2 x^k^2/(1 + x^k^2), {k, 1,Floor[nmax^(1/2) + 1]}], {x, 0, nmax}], x]]
    Table[DivisorSum[n, (-1)^(n/# + 1) # &, IntegerQ[#^(1/2)] &], {n, 85}]
    f[p_, e_] := If[p == 2, (1 - (-2)^(e + 1))/3, (p^(2*Floor[e/2 + 1]) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    seq(n)={Vec(deriv(log(prod(k=1, n, (1 + x^(k^2) + O(x*x^n))))))} \\ Andrew Howroyd, Jul 20 2018
    
  • PARI
    a(n)={sumdiv(n, d, if(n%d^2, 0, (-1)^(n/d^2 + 1) * d^2))} \\ Andrew Howroyd, Jul 20 2018

Formula

G.f.: Sum_{k>=1} k^2*x^(k^2)/(1 + x^(k^2)).
a(n) = 1 if n is an odd squarefree (A056911).
a(n) = -1 if n is an even squarefree (A039956).
a(n) = Sum_{d^2|n} (-1)^(n/d^2 + 1) * d^2. - Andrew Howroyd, Jul 20 2018
Multiplicative with a(2^e) = (1 - (-2)^(e + 1))/3, and a(p^e) = (p^(2*floor(e/2 + 1)) - 1)/(p^2 - 1) for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (1 - 1/sqrt(2)) * zeta(3/2)/3 = A268682 * A078434 / 3 = 0.255049... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018

A359937 a(n) = Sum_{d|n, d-1 is square} d.

Original entry on oeis.org

1, 3, 1, 3, 6, 3, 1, 3, 1, 18, 1, 3, 1, 3, 6, 3, 18, 3, 1, 18, 1, 3, 1, 3, 6, 29, 1, 3, 1, 18, 1, 3, 1, 20, 6, 3, 38, 3, 1, 18, 1, 3, 1, 3, 6, 3, 1, 3, 1, 68, 18, 29, 1, 3, 6, 3, 1, 3, 1, 18, 1, 3, 1, 3, 71, 3, 1, 20, 1, 18, 1, 3, 1, 40, 6, 3, 1, 29, 1, 18, 1, 85, 1, 3
Offset: 1

Views

Author

Seiichi Manyama, Jan 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[IntegerQ[Sqrt[d-1]], d, 0], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Jan 21 2023 *)
  • PARI
    a(n) = sumdiv(n, d, issquare(d-1)*d);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=0, sqrtint(N), (k^2+1)*x^(k^2+1)/(1-x^(k^2+1))))

Formula

G.f.: Sum_{k>=0} (k^2+1) * x^(k^2+1)/(1 - x^(k^2+1)).
Sum_{k=1..n} a(k) ~ zeta(3/2)*n^(3/2)/3. - Vaclav Kotesovec, Jan 21 2023

A232554 Square numbers whose sum of square divisors is also square.

Original entry on oeis.org

1, 1764, 60516, 82369, 529984, 2056356, 2798929, 3534400, 18181696, 38900169, 96020401, 97121025, 335988900, 455907904, 457318225, 617820736, 1334513961, 1599200100, 2176689025, 3279852900, 4464244225, 8586616896, 15688815025, 24514164900, 33366502225
Offset: 1

Views

Author

Antonio Roldán, Nov 26 2013

Keywords

Examples

			60516 = 246^2. Sum of square divisors: 60516 + 15129 + 6724 + 1681 + 36 + 9 + 4 + 1 = 84100 = 290^2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); A035316[1] = 1; A035316[n_] := Times @@ f @@@ FactorInteger[n];
    Select[Range[200000]^2, IntegerQ[Sqrt[A035316[#]]]&] (* Amiram Eldar, Aug 12 2023 *)
    ssdQ[n_]:=IntegerQ[Sqrt[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]]]]; Select[Range[200000]^2,ssdQ] (* Harvey P. Dale, Feb 03 2025 *)
  • PARI
    {for(n=1,10^5,m=n*n;k=sumdiv(m,d,d*issquare(d));if(issquare(k),print(m)))}

Formula

a(n) = A046655(n)^2.

A232555 Nonsquare numbers whose sum of proper square divisors is a square greater than 1.

Original entry on oeis.org

3528, 5292, 8820, 10584, 12348, 17640, 19404, 22932, 24696, 26460, 29988, 33516, 37044, 38808, 40572, 45864, 51156, 52920, 54684, 58212, 59976, 61740, 65268, 67032, 68796, 72324, 74088, 75852, 81144, 82908, 89964, 93492, 97020, 100548, 102312, 104076, 107604
Offset: 1

Views

Author

Antonio Roldán, Nov 26 2013

Keywords

Examples

			8820 is nonsquare number. Sum of proper square divisor: 1764 + 441 + 196 + 49 + 36 + 9 + 4 + 1 = 2500 = 50^2.
		

Crossrefs

Subsequence of A232556.

Programs

  • Mathematica
    f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); A035316[1] = 1; A035316[n_] := Times @@ f @@@ FactorInteger[n]; sqQ[n_] := n>1 && IntegerQ[Sqrt[n]];
    Select[Range[100000], !IntegerQ[Sqrt[#]] && sqQ[A035316[#]] &] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    {for(n=1,10^5,if(issquare(n)==0,k=sumdiv(n,d,d*issquare(d)); if(issquare(k)&&k>>1, print(n))))}

A232556 Numbers whose sum of proper square divisors is a square greater than 1.

Original entry on oeis.org

900, 3528, 4900, 5292, 8820, 10404, 10584, 12348, 17640, 19404, 22932, 24696, 26460, 29988, 33516, 37044, 38808, 40572, 45864, 51156, 52920, 54684, 58212, 59976, 61740, 65268, 67032, 68796, 72324, 74088, 75852, 79524, 81144, 81796, 82908, 89964, 93492
Offset: 1

Views

Author

Antonio Roldán, Nov 26 2013

Keywords

Examples

			Sum of proper square divisors of 5292: 1764 + 441 + 196 + 49 + 36 + 9 + 4 + 1 = 2500 = 50^2 is square number.
		

Crossrefs

Disjoint union of A232555 and A232557.
Cf. A232554.

Programs

  • Mathematica
    f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); A035316[1] = 1; A035316[n_] := Times @@ f @@@ FactorInteger[n]; sqQ[n_] := n>1 && IntegerQ[Sqrt[n]];
    Select[Range[100000], sqQ[A035316[#] - If[IntegerQ[Sqrt[#]], #, 0]] &] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    {for(n=1,10^5,k=sumdiv(n,d,d*issquare(d)*(d>1,print(n)))}
Previous Showing 21-30 of 60 results. Next