cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 142 results. Next

A357642 Number of even-length integer compositions of 2n whose half-alternating sum is 0.

Original entry on oeis.org

1, 0, 1, 4, 13, 48, 186, 712, 2717, 10432, 40222, 155384, 601426, 2332640, 9063380, 35269392, 137438685, 536257280, 2094786870, 8191506136, 32063203590, 125613386912, 492516592620, 1932569186288, 7588478653938, 29816630378368, 117226929901676, 461151757861552
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			The a(0) = 1 through a(4) = 13 compositions:
  ()  .  (1111)  (1212)  (1313)
                 (1221)  (1322)
                 (2112)  (1331)
                 (2121)  (2213)
                         (2222)
                         (2231)
                         (3113)
                         (3122)
                         (3131)
                         (111311)
                         (112211)
                         (113111)
                         (11111111)
		

Crossrefs

The skew-alternating version appears to be A000984.
For original alternating sum we have A001700/A088218.
The version for partitions of any length is A357639, ranked by A357631.
For length multiple of 4 we have A110145.
These compositions of any length are ranked by A357625, reverse A357626.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357621 = half-alternating sum of standard compositions, reverse A357622.
A357637 counts partitions by half-alternating sum, skew A357638.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[2n],EvenQ[Length[#]]&&halfats[#]==0&]],{n,0,9}]
  • PARI
    a(n) = {my(v, res); if(n < 3, return(1 - bitand(n,1))); res = 0; v = vector(2*n, i, binomial(n-1,i-1)); forstep(i = 4, 2*n, 2, lp = i\4 * 2; rp = i - lp; res += v[lp] * v[rp]; ); res } \\ David A. Corneth, Oct 13 2022

Extensions

More terms from Alois P. Heinz, Oct 12 2022

A122135 Expansion of f(x, -x^4) / phi(-x^2) in powers of x where f(, ) and phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 26, 31, 40, 48, 60, 72, 89, 106, 130, 154, 186, 220, 264, 310, 370, 433, 512, 598, 704, 818, 958, 1110, 1293, 1494, 1734, 1996, 2308, 2650, 3052, 3496, 4014, 4584, 5248, 5980, 6825, 7760, 8834, 10020, 11380, 12882, 14594
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of integer partitions y of n such that y_i > y_{i+1} for all even i. For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (331) (71) (81)
(2211) (421) (332) (432)
(3211) (431) (441)
(521) (531)
(3311) (621)
(4211) (3321)
(4311)
(5211)
The even-length case appears to be A122134.
The odd-length case is A351595.
The alternately unequal version appears to be A122129, even A351008, odd A122130.
The alternately equal version is A351003, even A351012, odd A000009.
The alternately equal and unequal version is A351005, even A035457, odd A351593.
The alternately unequal and equal version is A351006, even A351007, odd A053251. (End)
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 4. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 7*x^7 + 10*x^8 + ...
G.f. = q^9 + q^49 + 2*q^89 + 2*q^129 + 3*q^169 + 4*q^209 + 6*q^249 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.5). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(d), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, -x^5] QPochhammer[ x^4, -x^5] QPochhammer[-x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+1))*(1 - x^(20*k+2))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+8))*(1 - x^(20*k+9))*(1 - x^(20*k+11))*(1 - x^(20*k+12))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+18))*(1 - x^(20*k+19)) ), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1) - 1) \2, x^(k^2 + k) / prod(i=1, 2*k+1, 1 - x^i, 1 + x * O(x^(n-k^2-k)))), n))};

Formula

Expansion of f(x^2, x^8) / f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^3, -x^7) * f(-x^4, -x^16) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, ...].
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1))).
Let f(n) = 1/Product_{k >= 0} (1-q^(20k+n)). Then g.f. is f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19); - N. J. A. Sloane, Mar 19 2012.
a(n) ~ (3 + sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016

A239261 Number of partitions of n having (sum of odd parts) = (sum of even parts).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 12, 0, 0, 0, 30, 0, 0, 0, 70, 0, 0, 0, 165, 0, 0, 0, 330, 0, 0, 0, 704, 0, 0, 0, 1380, 0, 0, 0, 2688, 0, 0, 0, 4984, 0, 0, 0, 9394, 0, 0, 0, 16665, 0, 0, 0, 29970, 0, 0, 0, 52096, 0, 0, 0, 90090, 0, 0, 0, 152064, 0, 0, 0
Offset: 0

Views

Author

Clark Kimberling, Mar 13 2014

Keywords

Examples

			a(8) counts these 4 partitions:  431, 41111, 3221, 221111.
From _Gus Wiseman_, Oct 24 2023: (Start)
The a(0) = 1 through a(12) = 12 partitions:
  ()  .  .  .  (211)  .  .  .  (431)     .  .  .  (633)
                               (3221)             (651)
                               (41111)            (4332)
                               (221111)           (5421)
                                                  (33222)
                                                  (52221)
                                                  (63111)
                                                  (432111)
                                                  (3222111)
                                                  (6111111)
                                                  (42111111)
                                                  (222111111)
(End)
		

Crossrefs

The LHS (sum of odd parts) is counted by A113685.
The RHS (sum of even parts) is counted by A113686.
Without all the zeros we have a(4n) = A249914(n).
The strict case (without zeros) is A255001.
The Heinz numbers of these partitions are A366748, see also A019507.
A000009 counts partitions into odd parts, ranks A066208.
A035363 counts partitions into even parts, ranks A066207.

Programs

  • Mathematica
    z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t]
    t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *)
    t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *)
    t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *)
    t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *)
    t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *)
    (* Peter J. C. Moses, Mar 12 2014 *)

Formula

A239260(n) + a(n) + A239262(n) = A000041(n).
From David A. Corneth, Oct 25 2023: (Start)
a(4*n) = A000009(2*n) * A000041(n) for n >= 0.
a(4*n + r) = 0 for n >= 0 and r in {1, 2, 3}. (End)

Extensions

More terms from Alois P. Heinz, Mar 15 2014

A341446 Heinz numbers of integer partitions whose only odd part is the smallest.

Original entry on oeis.org

2, 5, 6, 11, 14, 17, 18, 23, 26, 31, 35, 38, 41, 42, 47, 54, 58, 59, 65, 67, 73, 74, 78, 83, 86, 95, 97, 98, 103, 106, 109, 114, 122, 126, 127, 137, 142, 143, 145, 149, 157, 158, 162, 167, 174, 178, 179, 182, 185, 191, 197, 202, 209, 211, 214, 215, 222, 226
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only odd prime index (counting multiplicity) is the smallest.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      2: (1)         54: (2,2,2,1)    109: (29)
      5: (3)         58: (10,1)       114: (8,2,1)
      6: (2,1)       59: (17)         122: (18,1)
     11: (5)         65: (6,3)        126: (4,2,2,1)
     14: (4,1)       67: (19)         127: (31)
     17: (7)         73: (21)         137: (33)
     18: (2,2,1)     74: (12,1)       142: (20,1)
     23: (9)         78: (6,2,1)      143: (6,5)
     26: (6,1)       83: (23)         145: (10,3)
     31: (11)        86: (14,1)       149: (35)
     35: (4,3)       95: (8,3)        157: (37)
     38: (8,1)       97: (25)         158: (22,1)
     41: (13)        98: (4,4,1)      162: (2,2,2,2,1)
     42: (4,2,1)    103: (27)         167: (39)
     47: (15)       106: (16,1)       174: (10,2,1)
		

Crossrefs

These partitions are counted by A035363 (shifted left once).
Terms of A340932 can be factored into elements of this sequence.
The even version is A341447.
A001222 counts prime factors.
A005408 lists odd numbers.
A026804 counts partitions whose smallest part is odd.
A027193 counts odd-length partitions, ranked by A026424.
A031368 lists odd-indexed primes.
A032742 selects largest proper divisor.
A055396 selects smallest prime index.
A056239 adds up prime indices.
A058695 counts partitions of odd numbers, ranked by A300063.
A061395 selects largest prime index.
A066207 lists numbers with all even prime indices.
A066208 lists numbers with all odd prime indices.
A112798 lists the prime indices of each positive integer.
A244991 lists numbers whose greatest prime index is odd.
A340932 lists numbers whose smallest prime index is odd.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],OddQ[First[primeMS[#]]]&&And@@EvenQ[Rest[primeMS[#]]]&]

Formula

Also numbers n > 1 such that A055396(n) is odd and A032742(n) belongs to A066207.

A346698 Sum of the even-indexed parts (even bisection) of the multiset of prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 0, 4, 3, 2, 0, 2, 0, 1, 4, 5, 0, 3, 3, 6, 2, 1, 0, 2, 0, 2, 5, 7, 4, 3, 0, 8, 6, 4, 0, 2, 0, 1, 2, 9, 0, 2, 4, 3, 7, 1, 0, 4, 5, 5, 8, 10, 0, 4, 0, 11, 2, 3, 6, 2, 0, 1, 9, 3, 0, 3, 0, 12, 3, 1, 5, 2, 0, 2, 4, 13, 0, 5, 7, 14, 10, 6, 0, 5, 6, 1, 11, 15, 8, 4, 0, 4, 2, 4, 0, 2, 0, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1100 are {1,1,3,3,5}, so a(1100) = 1 + 3 = 4.
The prime indices of 2100 are {1,1,2,3,3,4}, so a(2100) = 1 + 3 + 4 = 8.
		

Crossrefs

Subtracting from the odd version gives A316524 (reverse: A344616).
The version for standard compositions is A346633 (odd: A209281(n+1)).
The odd version is A346697.
The even reverse version is A346699.
The reverse version is A346700.
A000120 and A080791 count binary digits 1 and 0, with difference A145037.
A001414 adds up prime factors, row-sums of A027746.
A029837 adds up parts of standard compositions (alternating: A124754).
A056239 adds up prime indices, row-sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[Last/@Partition[Append[primeMS[n],0],2]],{n,100}]
  • PARI
    A346698(n) = if(1==n,0,my(f=factor(n),s=0,p=0); for(k=1,#f~,while(f[k,2], s += (p%2)*primepi(f[k,1]); f[k,2]--; p++)); (s)); \\ Antti Karttunen, Nov 30 2021

Formula

a(n) = A056239(n) - A346697(n).
a(n) = A346697(n) - A316524(n).
a(n even omega) = A346699(n).
a(n odd omega) = A346700(n).
A344616(n) = A346699(n) - A346700(n).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Nov 30 2021

A122134 Expansion of Sum_{k>=0} x^(k^2+k)/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 18, 24, 28, 36, 42, 54, 62, 78, 91, 112, 130, 159, 184, 222, 258, 308, 356, 424, 488, 576, 664, 778, 894, 1044, 1196, 1389, 1590, 1838, 2098, 2419, 2754, 3162, 3596, 4114, 4668, 5328, 6032, 6864, 7760, 8806, 9936, 11252
Offset: 0

Views

Author

Michael Somos, Aug 21 2006, Oct 10 2007

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
In Watson 1937 page 275 he writes "Psi_0(q^{1/2},q) = prod_1^oo (1+q^{2n}) G(-q^2)" so this is the expansion in powers of q^2. - Michael Somos, Jun 29 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of even-length integer partitions y of n such that y_i != y_{i+1} for all even i. For example, the a(2) = 1 through a(9) = 7 partitions are:
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(2211) (3211) (71) (81)
(3311) (3321)
(4211) (4311)
(5211)
This appears to be the even-length version of A122135.
The odd-length version is A351595.
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 3. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = q + q^81 + q^121 + 2*q^161 + 2*q^201 + 4*q^241 + 4*q^281 + ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(c), p. 591.
  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.6). MR0858826 (88b:11063)

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / QPochhammer[ x, x, 2 k], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient [ 1 / (QPochhammer[ x^4, -x^5] QPochhammer[ -x, -x^5] QPochhammer[ x, x^2]), {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, -x^5] QPochhammer[ -x^3, -x^5] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+2))*(1 - x^(20*k+3))*(1 - x^(20*k+4))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+7))*(1 - x^(20*k+13))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+16))*(1 - x^(20*k+17)) *(1 - x^(20*k+18))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k) / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n -k^2-k)))), n))};

Formula

Euler transform of period 20 sequence [ 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, ...].
Expansion of f(x^4, x^6) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 29 2015
Expansion of f(-x^2, x^3) / phi(-x^2) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Jun 29 2015
Expansion of G(-x) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 29 2015
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k))).
Expansion of f(-x, -x^9) * f(-x^8, -x^12) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is the Ramanujan general theta function.
a(n) = number of partitions of n into parts that are each either == 2, 3, ..., 7 (mod 20) or == 13, 14, ..., 18 (mod 20). - Michael Somos, Jun 29 2015 [corrected by Vaclav Kotesovec, Nov 12 2016]
a(n) ~ (3 - sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016

A344415 Numbers whose greatest prime index is half their sum of prime indices.

Original entry on oeis.org

4, 9, 12, 25, 30, 40, 49, 63, 70, 84, 112, 121, 154, 165, 169, 198, 220, 264, 273, 286, 289, 325, 351, 352, 361, 364, 390, 442, 468, 520, 529, 561, 595, 624, 646, 714, 741, 748, 765, 832, 841, 850, 874, 918, 931, 952, 961, 988, 1020, 1045, 1173, 1197, 1224
Offset: 1

Views

Author

Gus Wiseman, May 19 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
       4: {1,1}           198: {1,2,2,5}
       9: {2,2}           220: {1,1,3,5}
      12: {1,1,2}         264: {1,1,1,2,5}
      25: {3,3}           273: {2,4,6}
      30: {1,2,3}         286: {1,5,6}
      40: {1,1,1,3}       289: {7,7}
      49: {4,4}           325: {3,3,6}
      63: {2,2,4}         351: {2,2,2,6}
      70: {1,3,4}         352: {1,1,1,1,1,5}
      84: {1,1,2,4}       361: {8,8}
     112: {1,1,1,1,4}     364: {1,1,4,6}
     121: {5,5}           390: {1,2,3,6}
     154: {1,4,5}         442: {1,6,7}
     165: {2,3,5}         468: {1,1,2,2,6}
     169: {6,6}           520: {1,1,1,3,6}
		

Crossrefs

The partitions with these Heinz numbers are counted by A035363.
The conjugate version is A340387.
This sequence is the case of equality in A344414 and A344416.
A001222 counts prime factors with multiplicity.
A025065 counts palindromic partitions, ranked by A265640.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product.
A322109 ranks partitions of n with no part > n/2, counted by A110618.
A334201 adds up all prime indices except the greatest.
A344291 lists numbers m with A001222(m) <= A056239(m)/2, counted by A110618.
A344296 lists numbers m with A001222(m) >= A056239(m)/2, counted by A025065.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max[primeMS[#]]==Total[primeMS[#]]/2&]

Formula

A061395(a(n)) = A056239(a(n))/2.

A053253 Coefficients of the '3rd-order' mock theta function omega(q).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 56, 68, 82, 101, 122, 146, 176, 210, 248, 296, 350, 410, 484, 566, 660, 772, 896, 1038, 1204, 1391, 1602, 1846, 2120, 2428, 2784, 3182, 3628, 4138, 4708, 5347, 6072, 6880, 7784, 8804, 9940, 11208, 12630
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

Empirical: a(n) is the number of integer partitions mu of 2n+1 such that the diagram of mu has an odd number of cells in each row and in each column. - John M. Campbell, Apr 24 2020
From Gus Wiseman, Jun 26 2022: (Start)
By Campbell's conjecture above that a(n) is the number of partitions of 2n+1 with all odd parts and all odd conjugate parts, the a(0) = 1 through a(5) = 8 partitions are (B = 11):
(1) (3) (5) (7) (9) (B)
(111) (311) (511) (333) (533)
(11111) (31111) (711) (911)
(1111111) (51111) (33311)
(3111111) (71111)
(111111111) (5111111)
(311111111)
(11111111111)
These partitions are ranked by A352143. (End)

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 15, 17, 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053254, A053255, A261401.
Cf. A095913(n)=a(n-3).
Cf. A259094.
Conjectured to count the partitions ranked by A352143.
A069911 = strict partitions w/ all odd parts, ranked by A258116.
A078408 = partitions w/ all odd parts, ranked by A066208.
A117958 = partitions w/ all odd parts and multiplicities, ranked by A352142.

Programs

  • Mathematica
    Series[Sum[q^(2n(n+1))/Product[1-q^(2k+1), {k, 0, n}]^2, {n, 0, 6}], {q, 0, 100}]
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x*O(x^n); polcoeff( sum(k=0, (sqrtint(2*n+1)-1)\2, A*=(x^(4*k)/(1-x^(2*k+1))^2 +x*O(x^(n-2*(k^2-k))))), n))} /* Michael Somos, Aug 18 2006 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, n++; A=1+x*O(x^n); polcoeff( sum(k=0, n-1, A*=(x/(1-x^(2*k+1)) +x*O(x^(n-k)))), n))} /* Michael Somos, Aug 18 2006 */

Formula

G.f.: omega(q) = Sum_{n>=0} q^(2*n*(n+1))/((1-q)*(1-q^3)*...*(1-q^(2*n+1)))^2.
G.f.: Sum_{k>=0} x^k/((1-x)(1-x^3)...(1-x^(2k+1))). - Michael Somos, Aug 18 2006
G.f.: (1 - G(0))/(1-x) where G(k) = 1 - 1/(1-x^(2*k+1))/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 10 2019
Conjectural g.f.: 1/(1 - x)*( 1 + Sum_{n >= 0} x^(3*n+1) /((1 - x)*(1 - x^3)*...*(1 - x^(2*n+1))) ). - Peter Bala, Nov 18 2024

A340602 Heinz numbers of integer partitions of even rank.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 11, 14, 17, 20, 21, 23, 24, 26, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 47, 49, 50, 54, 56, 57, 58, 59, 65, 66, 67, 68, 73, 74, 75, 80, 81, 83, 84, 86, 87, 91, 92, 95, 96, 97, 99, 102, 103, 104, 106, 109, 110, 111, 120, 122, 124, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
     1: ()           31: (11)           58: (10,1)
     2: (1)          32: (1,1,1,1,1)    59: (17)
     5: (3)          35: (4,3)          65: (6,3)
     6: (2,1)        36: (2,2,1,1)      66: (5,2,1)
     8: (1,1,1)      38: (8,1)          67: (19)
     9: (2,2)        39: (6,2)          68: (7,1,1)
    11: (5)          41: (13)           73: (21)
    14: (4,1)        44: (5,1,1)        74: (12,1)
    17: (7)          45: (3,2,2)        75: (3,3,2)
    20: (3,1,1)      47: (15)           80: (3,1,1,1,1)
    21: (4,2)        49: (4,4)          81: (2,2,2,2)
    23: (9)          50: (3,3,1)        83: (23)
    24: (2,1,1,1)    54: (2,2,2,1)      84: (4,2,1,1)
    26: (6,1)        56: (4,1,1,1)      86: (14,1)
    30: (3,2,1)      57: (8,2)          87: (10,2)
		

Crossrefs

Taking only length gives A001222.
Taking only maximum part gives A061395.
These partitions are counted by A340601.
The complement is A340603.
The case of positive rank is A340605.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A324516 counts partitions with rank = maximum minus minimum part (A324515).
A340653 counts factorizations of rank 0.
A340692 counts partitions of odd rank (A340603).
- Even -
A024430 counts set partitions of even length.
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A052841 counts ordered set partitions of even length.
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts even-length partitions of even numbers (A340784).
A339846 counts factorizations of even length.

Programs

  • Mathematica
    Select[Range[100],EvenQ[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]&]

Formula

Either n = 1 or A061395(n) - A001222(n) is even.

A344291 Numbers whose sum of prime indices is at least twice their number of prime indices (counted with multiplicity).

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, May 15 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}       25: {3,3}      43: {14}       62: {1,11}
     3: {2}      26: {1,6}      44: {1,1,5}    63: {2,2,4}
     5: {3}      27: {2,2,2}    45: {2,2,3}    65: {3,6}
     7: {4}      28: {1,1,4}    46: {1,9}      66: {1,2,5}
     9: {2,2}    29: {10}       47: {15}       67: {19}
    10: {1,3}    30: {1,2,3}    49: {4,4}      68: {1,1,7}
    11: {5}      31: {11}       50: {1,3,3}    69: {2,9}
    13: {6}      33: {2,5}      51: {2,7}      70: {1,3,4}
    14: {1,4}    34: {1,7}      52: {1,1,6}    71: {20}
    15: {2,3}    35: {3,4}      53: {16}       73: {21}
    17: {7}      37: {12}       55: {3,5}      74: {1,12}
    19: {8}      38: {1,8}      57: {2,8}      75: {2,3,3}
    21: {2,4}    39: {2,6}      58: {1,10}     76: {1,1,8}
    22: {1,5}    41: {13}       59: {17}       77: {4,5}
    23: {9}      42: {1,2,4}    61: {18}       78: {1,2,6}
For example, the prime indices of 45 are {2,2,3} with sum 7 >= 2*3, so 45 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A110618.
The conjugate version is A322109.
The case of equality is A340387, counted by A035363.
The 5-smooth case is A344293, with non-3-smooth case A344294.
The opposite version is A344296.
The conjugate opposite version is A344414.
The conjugate case of equality is A344415.
A001221 counts distinct prime indices.
A001222 counts prime indices with multiplicity.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&]

Formula

A056239(a(n)) >= 2*A001222(a(n)).
Previous Showing 41-50 of 142 results. Next