cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 71 results. Next

A144886 Lower triangular array called S1hat(4) related to partition number array A144885.

Original entry on oeis.org

1, 4, 1, 20, 4, 1, 120, 36, 4, 1, 840, 200, 36, 4, 1, 6720, 1720, 264, 36, 4, 1, 60480, 12480, 2040, 264, 36, 4, 1, 604800, 118560, 16000, 2296, 264, 36, 4, 1, 6652800, 1081920, 149600, 17280, 2296, 264, 36, 4, 1, 79833600, 11793600, 1362240, 163680, 18304, 2296, 264
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

If in the partition array M31hat(4):=A144885 entries with the same parts number m are summed one obtains this triangle of numbers S1hat(4). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first columns are A001715(n+2), A144888, A144889,...

Examples

			[1];[4,1];[20,4,1];[120,36,4,1];[840,200,36,4,1];...
		

Crossrefs

A144887 (row sums).

Formula

a(n,m)=sum(product(|S1(4;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(4,n,1)|= A049352(n,1) = A001715(n+2) = (n+2)!/3!.

A144891 Lower triangular array called S1hat(5) related to partition number array A144890.

Original entry on oeis.org

1, 5, 1, 30, 5, 1, 210, 55, 5, 1, 1680, 360, 55, 5, 1, 15120, 3630, 485, 55, 5, 1, 151200, 29820, 4380, 485, 55, 5, 1, 1663200, 321300, 39570, 5005, 485, 55, 5, 1, 19958400, 3225600, 421800, 43320, 5005, 485, 55, 5, 1, 259459200, 38808000, 4265100, 470550, 46445, 5005
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

If in the partition array M31hat(5):=A144890 entries with the same parts number m are summed one obtains this triangle of numbers S1hat(5). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first columns are A001720(n+3)=(n+3)!/4!, A144893, A144894,...

Examples

			[1];[5,1];[30,5,1];[210,55,5,1];[1680,360,55,5,1];...
		

Crossrefs

A144892 (row sums).

Formula

a(n,m)=sum(product(|S1(5;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(5,n,1)|= A049353(n,1) = A001720(n+3) = (n+3)!/4!.

A145357 Lower triangular array, called S1hat(6), related to partition number array A145356.

Original entry on oeis.org

1, 6, 1, 42, 6, 1, 336, 78, 6, 1, 3024, 588, 78, 6, 1, 30240, 6804, 804, 78, 6, 1, 332640, 62496, 8316, 804, 78, 6, 1, 3991680, 753984, 85176, 9612, 804, 78, 6, 1, 51891840, 8273664, 1021608, 94248, 9612, 804, 78, 6, 1, 726485760, 109118016, 11394432, 1157688, 102024
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If in the partition array M31hat(6):=A145356 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(6). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first columns are A001725(n+4), A145359, A145360,...

Examples

			Triangle begins:
  [1];
  [6,1];
  [42,6,1];
  [336,78,6,1];
  [3024,588,78,6,1];
  ...
		

Crossrefs

Cf. A145358 (row sums).

Formula

a(n,m) = sum(product(|S1(6;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(6,n,1)|= A049374(n,1) = A001725(n+4) = (n+4)!/5!.

A145362 Lower triangular array S1hat(-1) read by rows, related to partition number array A145361.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If in the partition array M31hat(-1):=A145361 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(-1). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first column is [1,1,0,0,0,...]=A008279(1,n-1), n>=1.
T(n,m) gives the number of partitions of n with m parts, with each part not exceeding 2. - Wolfdieter Lang, Aug 03 2023

Examples

			Triangle begins:
  [1];
  [1,1];
  [0,1,1];
  [0,1,1,1];
  [0,0,1,1,1];
  [0,0,1,1,1,1];
  ...
		

Crossrefs

Cf. A004526(n+2), n>=1, (row sums).
Cf. A008275, A008279, A008284, A036039, A145361, A339884 (parts <=3), A232539 (parts <=4).

Programs

Formula

T(n,m) = Sum_{q=1..p(n,m)} Product_{j=1..n} S1(-1;j,1)^e(n,m,q,j) if n>=m>=1, else 0. Here p(n,m) = A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S1(-1;n,1) = A008279(1,n-1) = [1,1,0,0,0,...], n>=1.
The triangle starts in row n with ceiling(n/2) - 1 zeros, and is 1 otherwise. - Wolfdieter Lang, Aug 03 2023
G.f.: 1/((1-u*t)*(1-u*t^2)). [Comtet page 97 [2c]]. - R. J. Mathar, May 27 2025

A265185 Non-vanishing traces of the powers of the adjacency matrix for the simple Lie algebra B_4: 2 * ((2 + sqrt(2))^n + (2 - sqrt(2))^n).

Original entry on oeis.org

4, 8, 24, 80, 272, 928, 3168, 10816, 36928, 126080, 430464, 1469696, 5017856, 17132032, 58492416, 199705600, 681837568, 2327939072, 7948081152, 27136446464, 92649623552, 316325601280, 1080003158016, 3687361429504, 12589439401984, 42983034748928
Offset: 0

Views

Author

Tom Copeland, Dec 04 2015

Keywords

Comments

a(n) is the trace of the 2*n-th power of the adjacency matrix M for the simple Lie algebra B_4, given in the Damianou link. M = Matrix[row 1; row 2; row 3; row 4] = Matrix[0,1,0,0; 1,0,1,0; 0,1,0,2; 0,0,1,0]. Equivalently, the trace tr(M^(2*k)) is the sum of the 2*n-th powers of the eigenvalues of M. The eigenvalues are the zeros of the characteristic polynomial of M, which is det(x*I - M) = x^4 - 4*x^2 + 2 = A127672(4,x), and are (+-) sqrt(2 + sqrt(2)) and (+-) sqrt(2 - sqrt(2)), or the four unique values generated by 2*cos((2*n+1)*Pi/8). Compare with A025192 for B_3. The odd power traces vanish.
-log(1 - 4*x^2 + 2*x^4) = 8*x^2/2 + 24*x^4/4 + 80*x^6/6 + ... = Sum_{n>0} tr(M^k) x^k / k = Sum_{n>0} a(n) x^(2k) / 2k gives an aerated version of the sequence a(n), excluding a(0), and exp(-log(1 - 4*x + 2*x^2)) = 1 / (1 - 4*x + 2*x^2) is the e.g.f. for A007070.
As in A025192, the cycle index partition polynomials P_k(x[1],...,x[k]) of A036039 evaluated with the negated power sums, the aerated a(n), are P_2(0,-a(1)) = P_2(0,-8) = -8, P_4(0,-a(1),0,-a(2)) = P_4(0,-8,0,-24) = 48, and all other P_k(0,-a(1),0,-a(2),0,...) = 0 since 1 - 4*x^2 + 2*x^4 = 1 - 8*x^2/2! + 48*x^4/4! = det(I - x M) = exp(-Sum_{k>0} tr(M^k) x^k / k) = exp[P.(-tr(M),-tr(M^2),...)x] = exp[P.(0,-a(1),0,-a(2),...)x].
Because of the inverse relation between the Faber polynomials F_n(b1,b2,...,bn) of A263916 and the cycle index polynomials, F_n(0,-4,0,2,0,0,0,...) = tr(M^n) gives aerated a(n), excluding a(0). E.g., F_2(0,-4) = -2 * -4 = 8, F_4(0,-4,0,2) = -4 * 2 + 2 * (-4)^2 = 24, and F_6(0,-4,0,2,0,0) = -2*(-4)^3 + 6*(-4)*2 = 80.

Crossrefs

Programs

  • Magma
    [Floor(2 * ((2 + Sqrt(2))^n + (2 - Sqrt(2))^n)): n in [0..30]]; // Vincenzo Librandi, Dec 06 2015
    
  • Mathematica
    4 LinearRecurrence[{4, -2}, {1, 2}, 30] (* Vincenzo Librandi, Dec 06 2015 and slightly modified by Robert G. Wilson v, Feb 13 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-8*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Feb 12 2018

Formula

a(n) = 2 * ((2 + sqrt(2))^n + (2 - sqrt(2))^n) = Sum_{k=0..3} 2^(2n) (cos((2k+1)*Pi/8))^(2n) = 2*2^(2n) (cos(Pi/8)^(2n) + cos(3*Pi/8)^(2n)) = 2 Sum_{k=0..1} (exp(i(2k+1)*Pi/8) + exp(-i*(2k+1)*Pi/8))^(2n).
E.g.f.: 2 * e^(2*x) * (e^(sqrt(2)*x) + e^(-sqrt(2)*x)) = 4*e^(2*x)*cosh(sqrt(2)*x) = 2*(exp(4*x*cos(Pi/8)^2) + exp(4*x cos(3*Pi/8)^2) ).
a(n) = 4*A006012(n) = 8*A007052(n-1) = 2*A056236(n).
G.f.: (4-8*x)/(1-4*x+2*x^2). - Robert Israel, Dec 07 2015
Note the preceding o.g.f. is four times that of A006012 and the denominator is y^4 * A127672(4,1/y) with y = sqrt(x). Compare this with those of A025192 and A189315. - Tom Copeland, Dec 08 2015

Extensions

More terms from Vincenzo Librandi, Dec 06 2015

A274540 Decimal expansion of exp(sqrt(2)).

Original entry on oeis.org

4, 1, 1, 3, 2, 5, 0, 3, 7, 8, 7, 8, 2, 9, 2, 7, 5, 1, 7, 1, 7, 3, 5, 8, 1, 8, 1, 5, 1, 4, 0, 3, 0, 4, 5, 0, 2, 4, 0, 1, 6, 6, 3, 9, 4, 3, 1, 5, 1, 1, 0, 9, 6, 1, 0, 0, 6, 8, 3, 6, 4, 7, 0, 9, 8, 5, 1, 5, 0, 9, 7, 8, 5, 8, 3, 0, 8, 0, 7, 3, 2, 7, 9, 1, 6, 5, 0
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2016

Keywords

Comments

Define P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(q) = C1 and x(n) = 1 for all other n. We find that C2 = lim_{n -> infinity} P(n) = exp((C1-1)/q).
The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.
Some transform pairs: C1 = A002162 (log(2)) and C2 = A135002 (2/exp(1)); C1 = A016627 (log(4)) and C2 = A135004 (4/exp(1)); C1 = A001113 (exp(1)) and C2 = A234473 (exp(exp(1)-1)).
From Peter Bala, Oct 23 2019: (Start)
The constant is irrational: Henry Cohn gives the following proof in Todd and Vishals Blog - "By the way, here's my favorite application of the tanh continued fraction: exp(sqrt(2)) is irrational.
Consider sqrt(2)*(exp(sqrt(2))-1)/(exp(sqrt(2))+1). If exp(sqrt(2)) were rational, or even in Q(sqrt(2)), then this expression would be in Q(sqrt(2)). However, it is sqrt(2)*tanh(1/sqrt(2)), and the tanh continued fraction shows that this equals [0,1,6,5,14,9,22,13,...]. If it were in Q(sqrt(2)), it would have a periodic simple continued fraction expansion, but it doesn't." (End)

Examples

			c = 4.113250378782927517173581815140304502401663943151...
		

Crossrefs

Programs

  • Maple
    Digits := 80: evalf(exp(sqrt(2))); # End program 1.
    P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=1 then (1 + sqrt(2)) else 1 fi: end: Digits := 49; evalf(P(120)); # End program 2.
  • Mathematica
    First@ RealDigits@ N[Exp[Sqrt@ 2], 80] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    my(x=exp(sqrt(2))); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016

Formula

c = exp(sqrt(2)).
c = lim_{n -> infinity} P(n) with P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(1) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.

Extensions

More terms from Jon E. Schoenfield, Mar 15 2018

A028353 Coefficient of x^(2*n+1) in arctanh(x)/sqrt(1-x^2), multiplied by (2*n+1)!.

Original entry on oeis.org

1, 5, 89, 3429, 230481, 23941125, 3555578025, 715154761125, 187188449198625, 61836509511685125, 25163273966324405625, 12368068140988819153125, 7224011282550809645600625
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Number of degree-(2*n+1) permutations with exactly one odd cycle. - Vladeta Jovovic, Aug 13 2004
a(n)=sum over all multinomials M2(2*n+1,k), k from {1..p(2*n+1)} restricted to partitions with exactly one odd and possibly even parts. p(2*n+1)= A000041(2*n+1) (partition numbers) and for the M2-multinomial numbers in A-St order see A036039(2*n+1,k). - Wolfdieter Lang, Aug 07 2007.

Examples

			arctanh(x)/sqrt(1-x^2) = x + 5/6*x^3 + 89/120*x^5 + 381/560*x^7 + ...
Multinomial representation for a(2): partitions of 2*2+1=5 with one odd part: (5) with position k=1, (1,4) with k=2, (2,3) with k=3, (1,2^2) with k=5; M2(5,1)= 24, M2(5,2)= 30, M2(5,3)= 20, M2(5,5)= 15, adding up to a(2)=89.
		

Crossrefs

Cf. A060338.
Cf. A060524.

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[ArcTanh[x]/Sqrt[1-x^2],{x,0,n}],{n,1,41,2}] (* Vaclav Kotesovec, Oct 24 2013 *)

Formula

D-finite with recurrence: a(n) = (8*n^2 - 4*n + 1)*a(n-1) - 4*(n-1)^2*(2*n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 24 2013
a(n) ~ (2*n)^(2*n+1)*log(n)/exp(2*n) * (1 + (gamma + 4*log(2)) / log(n)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 24 2013

A144881 Lower triangular array called S1hat(3) related to partition number array A144880.

Original entry on oeis.org

1, 3, 1, 12, 3, 1, 60, 21, 3, 1, 360, 96, 21, 3, 1, 2520, 684, 123, 21, 3, 1, 20160, 4320, 792, 123, 21, 3, 1, 181440, 35640, 5292, 873, 123, 21, 3, 1, 1814400, 293760, 42768, 5616, 873, 123, 21, 3, 1, 19958400, 2881440, 348840, 45684, 5859, 873, 123, 21, 3, 1, 239500800
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

If in the partition array M31hat(3):=A144880 entries with the same parts number m are summed one obtains this triangle of numbers S1hat(3). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first columns are A001710(n+1), A144883, A144884,...

Examples

			[1];[3,1];[12,3,1];[60,21,3,1];[360,96,21,3,1];...
		

Crossrefs

A144882 (row sums).

Formula

a(n,m)=sum(product(|S1(3;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(3,n,1)|= A046089(n,1) = A001710(n+1) = (n+1)!/2.

A145364 Lower triangular array, called S1hat(-2), related to partition number array A145363.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 0, 6, 2, 1, 0, 4, 6, 2, 1, 0, 4, 12, 6, 2, 1, 0, 0, 12, 12, 6, 2, 1, 0, 0, 8, 28, 12, 6, 2, 1, 0, 0, 8, 24, 28, 12, 6, 2, 1, 0, 0, 0, 24, 56, 28, 12, 6, 2, 1, 0, 0, 0, 16, 56, 56, 28, 12, 6, 2, 1, 0, 0, 0, 16, 48, 120, 56, 28, 12, 6, 2, 1, 0, 0, 0, 0, 48, 112, 120, 56, 28, 12, 6, 2, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If in the partition array M31hat(-2):=A145363 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(-2). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first column is [1,2,2,0,0,0,...]= A008279(2,n-1), n>=1.

Examples

			Triangle begins:
  [1];
  [2,1];
  [2,2,1];
  [0,6,2,1];
  [0,4,6,2,1];
  ...
		

Crossrefs

Cf. A145365 (row sums).

Formula

a(n,m) = sum(product(S1(-2;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S1(-2,n,1)= A008279(2,n-1) = [1,2,2,0,0,0,...], n>=1.

A145367 Lower triangular array, called S1hat(-3), related to partition number array A145366.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 6, 15, 3, 1, 0, 24, 15, 3, 1, 0, 54, 51, 15, 3, 1, 0, 36, 108, 51, 15, 3, 1, 0, 36, 198, 189, 51, 15, 3, 1, 0, 0, 360, 360, 189, 51, 15, 3, 1, 0, 0, 324, 846, 603, 189, 51, 15, 3, 1, 0, 0, 216, 1296, 1332, 603, 189, 51, 15, 3, 1, 0, 0, 216, 2484, 2754, 2061, 603, 189
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If in the partition array M31hat(-3):=A145366 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(-3). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first column is [1,3,6,6,0,0,0,...]= A008279(3,n-1), n>=1.

Examples

			Triangle begins:
  [1];
  [3,1];
  [6,3,1];
  [6,15,3,1];
  [0,24,15,3,1];
  ...
		

Crossrefs

Cf. A145368 (row sums).

Formula

a(n,m) = sum(product(S1(-3;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S1(-3,n,1)= A008279(3,n-1) = [1,3,6,6,0,0,0,...], n>=1.
Previous Showing 41-50 of 71 results. Next