cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A099097 Riordan array (1, 3+x).

Original entry on oeis.org

1, 0, 3, 0, 1, 9, 0, 0, 6, 27, 0, 0, 1, 27, 81, 0, 0, 0, 9, 108, 243, 0, 0, 0, 1, 54, 405, 729, 0, 0, 0, 0, 12, 270, 1458, 2187, 0, 0, 0, 0, 1, 90, 1215, 5103, 6561, 0, 0, 0, 0, 0, 15, 540, 5103, 17496, 19683, 0, 0, 0, 0, 0, 1, 135, 2835, 20412, 59049, 59049, 0, 0, 0, 0, 0, 0, 18, 945, 13608, 78732, 196830, 177147
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A006190(n+1). Diagonal sums are A052931. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/3, -1/3, 0, 0, 0, 0, 0, ...] DELTA [3, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008

Examples

			Triangle begins:
  1;
  0, 3;
  0, 1, 9;
  0, 0, 6, 27;
  0, 0, 1, 27,  81;
  0, 0, 0,  9, 108, 243;
  ...
		

Crossrefs

Cf. A027465.
Diagonals are of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Mathematica
    Table[3^(2*k-n)*Binomial[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 19 2021 *)
  • Sage
    flatten([[3^(2*k-n)*binomial(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021

Formula

Triangle: T(n, k) = binomial(k, n-k)*3^k*(1/3)^(n-k).
G.f. of column k: (3*x + x^2)^k.
G.f.: 1/(1 - 3*y*x - y*x^2). - Philippe Deléham, Nov 21 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A006190(n+1), A135030(n+1), A181353(n+1) for x = 0,1,2,3 respectively. - Philippe Deléham, Nov 21 2011

A317497 Triangle T(n,k) = 3*T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3) with T(0,0) = 1 and T(n,k) = 0 for n or k < 0, read by rows.

Original entry on oeis.org

1, 3, 9, 27, 1, 81, 6, 243, 27, 729, 108, 1, 2187, 405, 9, 6561, 1458, 54, 19683, 5103, 270, 1, 59049, 17496, 1215, 12, 177147, 59049, 5103, 90, 531441, 196830, 20412, 540, 1, 1594323, 649539, 78732, 2835, 15, 4782969, 2125764, 295245, 13608, 135, 14348907, 6908733, 1082565, 61236, 945, 1
Offset: 0

Views

Author

Zagros Lalo, Jul 31 2018

Keywords

Comments

The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A013610 ((1+3*x)^n) and along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A027465 ((3+x)^n), see links. (Note: First layer of skew diagonals in triangles of coefficients in expansions of (1+3*x)^n and (3+x)^n are given in A304236 and A304249 respectively.)
The coefficients in the expansion of 1/(1-3x-x^3) are given by the sequence generated by the row sums.
The row sums give A052541.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.1038034027355..., when n approaches infinity.

Examples

			Triangle begins:
         1;
         3;
         9;
        27,        1;
        81,        6;
       243,       27;
       729,      108,       1;
      2187,      405,       9;
      6561,     1458,      54;
     19683,     5103,     270,      1;
     59049,    17496,    1215,     12;
    177147,    59049,    5103,     90;
    531441,   196830,   20412,    540,    1;
   1594323,   649539,   78732,   2835,   15;
   4782969,  2125764,  295245,  13608,  135;
  14348907,  6908733, 1082565,  61236,  945,  1;
  43046721, 22320522, 3897234, 262440, 5670, 18;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 364-366

Crossrefs

Row sums give A052541.
Cf. A000244 (column 0), A027471 (column 1), A027472 (column 2), A036216 (column 3), A036217 (column 4).
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k): A027465 (q=1), A304249 (q=2), this sequence (q=3), A318773 (q=4).

Programs

  • GAP
    Flat(List([0..16],n->List([0..Int(n/3)],k->3^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Aug 01 2018
    
  • Magma
    [3^(n-3*k)*Binomial(n-2*k,k): k in [0..Floor(n/3)], n in [0..24]]; // G. C. Greubel, May 12 2021
    
  • Mathematica
    T[n_, k_]:= T[n, k] = 3^(n-3k)(n-2k)!/((n-3k)! k!); Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ]//Flatten
    T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, 3 T[n-1, k] + T[n-3, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}]//Flatten
  • Sage
    flatten([[3^(n-3*k)*binomial(n-2*k,k) for k in (0..n//3)] for n in (0..24)]) # G. C. Greubel, May 12 2021

Formula

T(n,k) = 3^(n-3*k) * (n-2*k)!/(k! * (n-3*k)!) where n is a nonnegative integer and k = 0..floor(n/3).

A217629 Triangle, read by rows, where T(n,k) = k!*C(n, k)*3^(n-k) for n>=0, k=0..n.

Original entry on oeis.org

1, 3, 1, 9, 6, 2, 27, 27, 18, 6, 81, 108, 108, 72, 24, 243, 405, 540, 540, 360, 120, 729, 1458, 2430, 3240, 3240, 2160, 720, 2187, 5103, 10206, 17010, 22680, 22680, 15120, 5040, 6561, 17496, 40824, 81648, 136080, 181440, 181440, 120960, 40320
Offset: 0

Views

Author

Vincenzo Librandi, Nov 10 2012

Keywords

Comments

Triangle formed by the derivatives of x^n evaluated at x=3.
Sum(T(n,k), k=0..n) = A053486(n) (see the Formula section of A053486). Also:
first column: A000244;
second column: A027471;
third column: 2*A027472;
fourth column: 6*A036216;
fifth column: 24*A036217.

Examples

			Triangle begins:
1;
3,     1;
9,     6,     2;
27,    27,    18,     6;
81,    108,   108,    72,     24;
243,   405,   540,    540,    360,    120;
729,   1458,  2430,   3240,   3240,   2160,    720;
2187,  5103,  10206,  17010,  22680,  22680,   15120,   5040;
6561,  17496, 40824,  81648,  136080, 181440,  181440,  120960,  40320; etc.
		

Crossrefs

Programs

  • Magma
    [Factorial(n)/Factorial(n-k)*3^(n-k): k in [0..n], n in [0..10]];
  • Mathematica
    Flatten[Table[n!/(n-k)!*3^(n-k), {n, 0, 10}, {k, 0, n}]]

Formula

T(n,k) = 3^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(3x)*x^k.

A094796 Triangle read by rows giving coefficients of polynomials arising in successive differences of central binomial numbers.

Original entry on oeis.org

1, 3, 1, 9, 15, 6, 27, 108, 135, 42, 81, 594, 1539, 1530, 456, 243, 2835, 12555, 25245, 22122, 6120, 729, 12393, 83835, 281475, 482436, 383292, 101520, 2187, 51030, 489888, 2466450, 6916833, 10546200, 7786692, 1980720
Offset: 0

Views

Author

Benoit Cloitre, Jun 11 2004

Keywords

Comments

Let D_0(n)=binomial(2*n,n) and D_{k+1}(n)=D_{k}(n+1)-D_{k}(n); then D_{k}(n)*(n+1)*(n+2)*...*(n+k) = binomial(2*n,n)*P_{k}(n) where P_{k} is a polynomial with integer coefficients of degree k.

Examples

			The third differences of the central binomial numbers are given by D_3(n) = binomial(2*n,n)*(n+1)*(n+2)*(n+3)*(27*n^3 + 108*n^2 + 135*n + 42) and the fourth row of the triangle is 27, 108, 135, 42.
From _M. F. Hasler_, Nov 15 2019: (Start)
The table reads:
  n  |  row(n)
  0  |    1
  1  |    3      1
  2  |    9     15       6
  3  |   27    108     135       42
  4  |   81    594    1539     1530      456
  5  |  243   2835   12555    25245    22122      6120
  6  |  729  12393   83835   281475   482436    383292    101520
  7  | 2187  51030  489888  2466450  6916833  10546200   7786692   1980720
  8  | 6561 201204 2602530 18329976 75981969 186899076 260520300 181218384 44634240
(End)
		

Crossrefs

Cf. A000984 (central binomial coefficients), A163771 (square array of central binomial coefficients and higher differences), A000244 (column k=0).
Main diagonal gives A098461.

Programs

  • Maple
    Dnk := proc(n,k)
        option remember;
        if k < 0 then
            0 ;
        elif k = 0 then
            binomial(2*n,n) ;
        else
            procname(n+1,k-1)-procname(n,k-1) ;
        end if;
    end proc:
    A094796 := proc(n,k)
        local xyvec,i,x ;
        xyvec := [] ;
        for i from 0 to n do
            xyvec := [op(xyvec),[i,Dnk(i,n)*mul(i+j,j=1..n)/Dnk(i,0)]] ;
        end do:
        CurveFitting[PolynomialInterpolation](xyvec,x) ;
        coeff(%,x,n-k) ;
    end proc: # R. J. Mathar, Nov 19 2019
  • Mathematica
    Dnk[n_, k_] := Dnk[n, k] = Which[k < 0, 0, k == 0, Binomial[2*n, n], True, Dnk[n + 1, k - 1] - Dnk[n, k - 1]];
    T[n_, k_] := Module[{xyvec, i, x , ip}, xyvec = {}; For[i = 0, i <= n, i++, AppendTo[xyvec, {i, Dnk[i, n]*Product[i + j, {j, 1, n}]/Dnk[i, 0]}]]; ip = InterpolatingPolynomial[xyvec, x]; Coefficient[ip, x, n - k]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 01 2024, after R. J. Mathar *)
  • PARI
    apply( {A094796_row(n,D(n,k)=if(k,D(n+1,k-1)-D(n,k-1),binomial(2*n,n)))=Vec(polinterpolate([0..n],vector(n+1,k,D(k--,n)*(n+k)!/k!/binomial(2*k,k))))}, [0..8]) \\ M. F. Hasler, Nov 15 2019

Formula

T(n,0) = 3^n. T(n,1) = A027472(n+2) + 6*A027472(n+1). T(n,2) = 3*(2*A036217(n-2) + 15*A036217(n-3) + 18*A036217(n-4)). - R. J. Mathar, Nov 19 2019

Extensions

Corrected and edited by M. F. Hasler, following observations by R. J. Mathar and Don Reble, Nov 15 2019
More terms from Don Reble, Nov 15 2019

A086864 a(n) = (n-1)*(n-2)*(n-3)*(3*n-10)*3^(n-5)/4.

Original entry on oeis.org

0, 0, 0, 1, 30, 360, 2970, 19845, 115668, 612360, 3018060, 14073345, 62788770, 270208224, 1128426390, 4594307445, 18302828040, 71553216240, 275154640632, 1042806816225, 3901324324230, 14427539010360, 52801538445810, 191427950399301, 688082033693340
Offset: 1

Views

Author

N. J. A. Sloane, Sep 16 2003

Keywords

References

  • L. Ericson et al., Enumeration of tree properties..., Algorithms Review, 1 (1990), 119-124.

Programs

  • Mathematica
    Table[((n-1)(n-2)(n-3)(3n-10)3^(n-5))/4,{n,30}] (* or *) LinearRecurrence[ {15,-90,270,-405,243},{0,0,0,1,30},30] (* Harvey P. Dale, May 15 2015 *)

Formula

G.f.: x^4*(15*x+1)/(1-3*x)^5 [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009]
a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=30, a(n)=15*a(n-1)-90*a(n-2)+ 270*a(n-3)- 405*a(n-4)+243*a(n-5). - Harvey P. Dale, May 15 2015
a(n) = A036217(n-4)+15*A036217(n-5). - R. J. Mathar, Apr 14 2018

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
Definition clarified by Harvey P. Dale, May 15 2015
Previous Showing 11-15 of 15 results.