A201377
Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of distinct pairs.
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 2, 5, 9, 17, 2, 7, 14, 27, 46, 3, 10, 21, 42, 74, 123, 4, 14, 31, 64, 116, 197, 323, 5, 19, 44, 93, 174, 303, 506, 809, 6, 25, 61, 132, 254, 452, 769, 1251, 1966, 8, 33, 83, 185, 363, 659, 1141, 1885, 3006, 4660
Offset: 0
Partitions of (2,1) into distinct positive pairs, T(2,1) = 3:
(2,1),
(2,0) + (0,1),
(1,1) + (1,0);
Partitions of (2,2) into distinct positive pairs, T(2,2) = 5:
(2,2),
(2,1) + (0,1),
(2,0) + (0,2),
(1,2) + (1,0),
(1,1) + (1,0) + (0,1).
First ten rows of triangle:
0: 1
1: 1 2
2: 1 3 5
3: 2 5 9 17
4: 2 7 14 27 46
5: 3 10 21 42 74 123
6: 4 14 31 64 116 197 323
7: 5 19 44 93 174 303 506 809
8: 6 25 61 132 254 452 769 1251 1966
9: 8 33 83 185 363 659 1141 1885 3006 4660
-
-- see link.
-
nmax = 10;
f[x_, y_] := Product[1 + x^n y^k, {n, 0, nmax}, {k, 0, nmax}]/2;
se = Series[f[x, y], {x, 0, nmax}, {y, 0, nmax}];
coes = CoefficientList[se, {x, y}];
t[n_ /; n >= 0, k_] /; 0 <= k <= n := coes[[n-k+1, k+1]];
T[n_, k_] := t[n+k, k];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 08 2021 *)
A219554
Number of bipartite partitions of (n,n) into distinct pairs.
Original entry on oeis.org
1, 2, 5, 17, 46, 123, 323, 809, 1966, 4660, 10792, 24447, 54344, 118681, 254991, 539852, 1127279, 2323849, 4733680, 9535079, 19005282, 37507802, 73333494, 142112402, 273092320, 520612305, 984944052, 1849920722, 3450476080, 6393203741, 11770416313, 21538246251
Offset: 0
a(0) = 1: [].
a(1) = 2: [(1,1)], [(1,0),(0,1)].
a(2) = 5: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(1,2),(1,0)], [(1,1),(1,0),(0,1)].
-
(* This program is not convenient for a large number of terms *)
a[n_] := If[n == 0, 1, (1/2) Coefficient[Product[O[x]^(n+1) + O[y]^(n+1) + (1 + x^i y^j ), {i, 0, n}, {j, 0, n}] // Normal, (x y)^n]];
a /@ Range[0, 31] (* Jean-François Alcover, Jun 26 2013, updated Sep 16 2019 *)
nmax = 20; p = 1; Do[Do[p = Expand[p*(1 + x^i*y^j)]; If[i*j != 0, p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &]], {i, 0, nmax}], {j, 0, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}]}] (* Vaclav Kotesovec, Jan 15 2016 *)
A026906
Number of sums S of distinct positive integers satisfying S <= n.
Original entry on oeis.org
1, 2, 4, 6, 9, 13, 18, 24, 32, 42, 54, 69, 87, 109, 136, 168, 206, 252, 306, 370, 446, 535, 639, 761, 903, 1068, 1260, 1482, 1738, 2034, 2374, 2764, 3212, 3724, 4309, 4977, 5737, 6601, 7583, 8696, 9956, 11382, 12992, 14808, 16856
Offset: 1
G.f. = x + 2*x^2 + 4*x^3 + 6*x^4 + 9*x^5 + 13*x^6 + 18*x^7 + 24*x^8 + 32*x^9 + ...
-
Table[ Sum[ PartitionsQ[k], {k, 1, n}], {n, 1, 50}]
A341062
Sequence whose partial sums give A000005.
Original entry on oeis.org
1, 1, 0, 1, -1, 2, -2, 2, -1, 1, -2, 4, -4, 2, 0, 1, -3, 4, -4, 4, -2, 0, -2, 6, -5, 1, 0, 2, -4, 6, -6, 4, -2, 0, 0, 5, -7, 2, 0, 4, -6, 6, -6, 4, 0, -2, -2, 8, -7, 3, -2, 2, -4, 6, -4, 4, -4, 0, -2, 10, -10, 2, 2, 1, -3, 4, -6, 4, -2, 4, -6, 10, -10, 2, 2, 0, -2, 4, -6, 8, -5, -1, -2, 10, -8, 0, 0, 4, -6, 10
Offset: 1
Cf.
A000027,
A000041,
A000070,
A000217,
A006128,
A006218,
A014153,
A036469,
A055507,
A078567,
A138137,
A284870,
A305082,
A340793.
-
Join[{1}, Differences[Table[DivisorSigma[0, n], {n, 1, 90}]]] (* Amiram Eldar, Feb 06 2021 *)
A305082
G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k).
Original entry on oeis.org
0, 1, 3, 5, 9, 13, 20, 28, 39, 54, 71, 94, 124, 159, 201, 258, 322, 401, 499, 613, 750, 918, 1110, 1340, 1617, 1935, 2308, 2752, 3261, 3854, 4554, 5350, 6273, 7348, 8572, 9983, 11612, 13460, 15578, 18007, 20761, 23894, 27473, 31511, 36090, 41296, 47152, 53767
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[((Log[1-x] + QPolyGamma[0, 1, x]) * QPochhammer[-1, x]) / (2*Log[x]), {x, 0, nmax}], x]
A360742
Number T(n,k) of sets of nonempty integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 2, 0, 1, 4, 6, 5, 3, 0, 1, 5, 10, 10, 7, 4, 0, 1, 6, 14, 19, 16, 10, 5, 0, 1, 7, 19, 30, 32, 24, 14, 6, 0, 1, 8, 26, 46, 57, 52, 35, 19, 8, 0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10, 0, 1, 10, 40, 93, 147, 172, 157, 117, 69, 33, 12
Offset: 0
T(6,3) = 10: {[1,1,4]}, {[1,2,3]}, {[2,2,2]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[2],[2,2]}, {[3],[1,2]}, {[4],[1,1]}, {[1],[2],[3]}.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 2;
0, 1, 3, 3, 2;
0, 1, 4, 6, 5, 3;
0, 1, 5, 10, 10, 7, 4;
0, 1, 6, 14, 19, 16, 10, 5;
0, 1, 7, 19, 30, 32, 24, 14, 6;
0, 1, 8, 26, 46, 57, 52, 35, 19, 8;
0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10;
...
-
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i), k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..12);
-
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i]]]]];
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[ g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i], k], {k, 0, j}]]]];
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
T[n_, k_] := Coefficient[b[n, n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 15 2023, after Alois P. Heinz *)
A248956
Number of polynomials a_k*x^k + ... + a_1*x + a_0 with k > 0, integer coefficients and only non-multiple positive integer roots and a_0 = p^n (p is a prime).
Original entry on oeis.org
1, 3, 5, 9, 13, 19, 27, 37, 49, 65, 85, 109, 139, 175, 219, 273, 337, 413, 505, 613, 741, 893, 1071, 1279, 1523, 1807, 2137, 2521, 2965, 3477, 4069, 4749, 5529, 6425, 7449, 8619, 9955, 11475, 13203, 15167, 17393, 19913, 22765, 25985, 29617, 33713, 38321, 43501
Offset: 0
a(1) = 3: -p*x+p; -x+p; x^2 - (p+1)*x + p.
Original entry on oeis.org
0, 1, 4, 8, 16, 25, 42, 61, 90, 130, 178, 242, 332, 436, 566, 747, 952, 1210, 1540, 1926, 2400, 2994, 3674, 4506, 5526, 6708, 8108, 9808, 11768, 14080, 16850, 20022, 23738, 28128, 33152, 39015, 45854, 53662, 62696, 73166, 85118, 98826, 114636, 132586, 153102
Offset: 0
-
Table[Sum[DivisorSigma[1, k] * PartitionsQ[n-k], {k,1,n}], {n,0,50}]
nmax = 50; CoefficientList[Series[Sum[j*x^j/(1-x^j), {j, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]
A277643
Partial sums of number of overpartitions (A015128).
Original entry on oeis.org
1, 3, 7, 15, 29, 53, 93, 157, 257, 411, 643, 987, 1491, 2219, 3259, 4731, 6793, 9657, 13605, 19005, 26341, 36245, 49533, 67261, 90789, 121855, 162679, 216087, 285655, 375903, 492527, 642671, 835283, 1081539, 1395347, 1793987, 2298873, 2936465, 3739401, 4747849
Offset: 0
-
Accumulate[Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]]
nmax = 50; CoefficientList[Series[1/(1-x) * Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 25 2017 *)
A096914
Number of partitions of 2*n into distinct parts with exactly two odd parts.
Original entry on oeis.org
1, 2, 4, 7, 11, 17, 25, 36, 50, 69, 93, 124, 163, 212, 273, 349, 442, 556, 695, 863, 1066, 1310, 1602, 1950, 2364, 2854, 3433, 4115, 4916, 5854, 6951, 8229, 9716, 11442, 13441, 15752, 18419, 21490, 25021, 29074, 33718, 39031, 45101, 52024, 59910
Offset: 2
-
Drop[ Union[ CoefficientList[ Series[x^4* Product[1 + x^(2m), {m, 1, 50}] / Product[1 - x^(2m), {m, 1, 2}], {x, 0, 920}], x]], 1] (* Robert G. Wilson v, Aug 21 2004 *)
nmax = 50; Drop[CoefficientList[Series[(x^2/(1 - x - x^2 + x^3)) * Product[1 + x^m, {m, 1, nmax}], {x, 0, nmax}], x], 2] (* Vaclav Kotesovec, May 29 2018 *)
Comments