cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A138995 First differences of Frobenius numbers for 4 successive numbers A138984.

Original entry on oeis.org

1, 1, 6, 2, 2, 10, 3, 3, 14, 4, 4, 18, 5, 5, 22, 6, 6, 26, 7, 7, 30, 8, 8, 34, 9, 9, 38, 10, 10, 42, 11, 11, 46, 12, 12, 50, 13, 13, 54, 14, 14, 58, 15, 15, 62, 16, 16, 66, 17, 17, 70, 18, 18, 74, 19, 19, 78, 20, 20, 82, 21, 21, 86, 22, 22, 90, 23, 23, 94, 24, 24, 98, 25, 25, 102, 26
Offset: 1

Views

Author

Artur Jasinski, Apr 05 2008

Keywords

Comments

For first differences of Frobenius numbers for 2 successive numbers see A005843
For first differences of Frobenius numbers for 3 successive numbers see A014682
For first differences of Frobenius numbers for 4 successive numbers see A138995
For first differences of Frobenius numbers for 5 successive numbers see A138996
For first differences of Frobenius numbers for 6 successive numbers see A138997
For first differences of Frobenius numbers for 7 successive numbers see A138998
For first differences of Frobenius numbers for 8 successive numbers see A138999

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4}]], {n, 1, 100}]; Differences[a]
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 1, 6, 2, 2, 10},50] (* G. C. Greubel, Feb 18 2017 *)
    Differences[Table[FrobeniusNumber[Range[n,n+3]],{n,2,100}]] (* Harvey P. Dale, Dec 22 2018 *)
  • PARI
    x='x+O('x^50); Vec(-x*(2*x^5-6*x^2-x-1) / ((x-1)^2*(x^2+x+1)^2)) \\ G. C. Greubel, Feb 18 2017

Formula

a(n) = A138984(n+1) - A138984(n).
a(n) = 2*a(n-3) - a(n-6). - R. J. Mathar, Apr 20 2008
a(n) = (1/3)*x(mod(n,3))*mod(n,3)-(1/3)*n*x(mod(n,3))+(1/3)*n*x(3+mod(n,3))+x(mod(n,3))-(1/3)*mod(n,3)*x(3+mod(n,3)). - Alexander R. Povolotsky, Apr 20 2008
G.f.: -x*(2*x^5-6*x^2-x-1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, Dec 13 2012

A138996 First differences of Frobenius numbers for 5 successive numbers A138985.

Original entry on oeis.org

1, 1, 1, 7, 2, 2, 2, 12, 3, 3, 3, 17, 4, 4, 4, 22, 5, 5, 5, 27, 6, 6, 6, 32, 7, 7, 7, 37, 8, 8, 8, 42, 9, 9, 9, 47, 10, 10, 10, 52, 11, 11, 11, 57, 12, 12, 12, 62, 13, 13, 13, 67, 14, 14, 14, 72, 15, 15, 15, 77, 16, 16, 16, 82, 17, 17, 17, 87, 18, 18, 18, 92, 19, 19, 19, 97, 20, 20, 20
Offset: 1

Views

Author

Artur Jasinski, Apr 05 2008

Keywords

Comments

For first differences of Frobenius numbers for 2 successive numbers see A005843
For first differences of Frobenius numbers for 3 successive numbers see A014682
For first differences of Frobenius numbers for 4 successive numbers see A138995
For first differences of Frobenius numbers for 5 successive numbers see A138996
For first differences of Frobenius numbers for 6 successive numbers see A138997
For first differences of Frobenius numbers for 7 successive numbers see A138998
For first differences of Frobenius numbers for 8 successive numbers see A138999

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5}]], {n, 1, 100}]; Differences[a]
    LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {1, 1, 1, 7, 2, 2, 2,
      12}, 50] (* G. C. Greubel, Feb 18 2017 *)
  • PARI
    x='x+O('x^50); Vec(-x*(2*x^7-7*x^3-x^2-x-1) / ((x-1)^2*(x+1)^2*(x^2+1)^2)) \\ G. C. Greubel, Feb 18 2017

Formula

a(n) = A138985(n+1) - A138985(n).
a(n) = 2*a(n-4) - a(n-8). - R. J. Mathar, Apr 20 2008
a(n) = -(1/4)*mod(n,4)*x(4+mod(n,4))+(1/4)*n*x(4+mod(n,4))+x(mod(n,4))-(1/4)*n*x(mod(n,4))+(1/4)*mod(n,4)*x(mod(n,4)). - Alexander R. Povolotsky, Apr 20 2008
G.f.: -x*(2*x^7-7*x^3-x^2-x-1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Dec 13 2012

A138997 First differences of Frobenius numbers for 6 successive numbers A138986.

Original entry on oeis.org

1, 1, 1, 1, 8, 2, 2, 2, 2, 14, 3, 3, 3, 3, 20, 4, 4, 4, 4, 26, 5, 5, 5, 5, 32, 6, 6, 6, 6, 38, 7, 7, 7, 7, 44, 8, 8, 8, 8, 50, 9, 9, 9, 9, 56, 10, 10, 10, 10, 62, 11, 11, 11, 11, 68, 12, 12, 12, 12, 74, 13, 13, 13, 13, 80, 14, 14, 14, 14, 86, 15, 15, 15, 15, 92, 16, 16, 16, 16, 98, 17, 17
Offset: 1

Views

Author

Artur Jasinski, Apr 05 2008

Keywords

Comments

For first differences of Frobenius numbers for 2 successive numbers see A005843
For first differences of Frobenius numbers for 3 successive numbers see A014682
For first differences of Frobenius numbers for 4 successive numbers see A138995
For first differences of Frobenius numbers for 5 successive numbers see A138996
For first differences of Frobenius numbers for 6 successive numbers see A138997
For first differences of Frobenius numbers for 7 successive numbers see A138998
For first differences of Frobenius numbers for 8 successive numbers see A138999

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6}]], {n, 1, 100}]; Differences[a]
    LinearRecurrence[{0, 0, 0, 0, 2, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 8, 2,
      2, 2, 2, 14}, 50] (* G. C. Greubel, Feb 18 2017 *)
    Differences[Table[FrobeniusNumber[Range[n,n+5]],{n,2,90}]] (* Harvey P. Dale, Dec 18 2023 *)
  • PARI
    x='x + O('x^50); Vec(-(-1-x-x^2-x^3-8*x^4+2*x^9)/((x-1)^2*(x^4+x^3+x^2+x+1)^2)) \\ G. C. Greubel, Feb 18 2017

Formula

a(n) = A138986(n+1) - A138986(n).
O.g.f.= -(-1-x-x^2-x^3-8*x^4+2*x^9)/((x-1)^2*(x^4+x^3+x^2+x+1)^2). - R. J. Mathar, Apr 20 2008
a(n) = 2*a(n-5) - a(n-10). - R. J. Mathar, Apr 20 2008
a(n)= (1/5)*n*x(5+mod(n,5))-(1/5)*mod(n,5)*x(5+mod(n,5))+x(mod(n,5))-(1/5)*n*x(mod(n,5))+(1/5) *mod(n,5)*x(mod(n,5)). - Alexander R. Povolotsky, Apr 20 2008

A138999 First differences of Frobenius numbers for 8 successive numbers A138988.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 10, 2, 2, 2, 2, 2, 2, 18, 3, 3, 3, 3, 3, 3, 26, 4, 4, 4, 4, 4, 4, 34, 5, 5, 5, 5, 5, 5, 42, 6, 6, 6, 6, 6, 6, 50, 7, 7, 7, 7, 7, 7, 58, 8, 8, 8, 8, 8, 8, 66, 9, 9, 9, 9, 9, 9, 74, 10, 10, 10, 10, 10, 10, 82, 11, 11, 11, 11, 11, 11, 90, 12, 12, 12, 12, 12, 12, 98, 13, 13, 13, 13
Offset: 1

Views

Author

Artur Jasinski, Apr 05 2008

Keywords

Comments

For first differences of Frobenius numbers for 2 successive numbers see A005843
For first differences of Frobenius numbers for 3 successive numbers see A014682
For first differences of Frobenius numbers for 4 successive numbers see A138995
For first differences of Frobenius numbers for 5 successive numbers see A138996
For first differences of Frobenius numbers for 6 successive numbers see A138997
For first differences of Frobenius numbers for 7 successive numbers see A138998
For first differences of Frobenius numbers for 8 successive numbers see A138999

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7, n + 8}]], {n, 1, 100}]; Differences[a]
    Differences[Table[FrobeniusNumber[Range[n,n+7]],{n,2,90}]] (* Harvey P. Dale, Oct 02 2011 *)

Formula

a(n) = A138988(n+1) - A138988(n).
From R. J. Mathar, Apr 20 2008: (Start)
G.f.: -(-1-x-x^2-x^3-x^4-x^5-10*x^6+2*x^13)/((x-1)^2*(x^6+x^5+x^4+x^3+x^2+x+1)^2).
a(n) = 2*a(n-7) - a(n-14).
(End)
a(n) = -(1/7)*mod(n,7)*x(7+mod(n,7))+(1/7)*mod(n,7)*x(mod(n,7))+x(mod(n,7))-(1/7)*n *x(mod(n,7))+(1/7)*n*x(7+mod(n,7)). - Alexander R. Povolotsky, Apr 20 2008

A069756 Frobenius number of the numerical semigroup generated by consecutive squares.

Original entry on oeis.org

23, 119, 359, 839, 1679, 3023, 5039, 7919, 11879, 17159, 24023, 32759, 43679, 57119, 73439, 93023, 116279, 143639, 175559, 212519, 255023, 303599, 358799, 421199, 491399, 570023, 657719, 755159, 863039, 982079, 1113023, 1256639, 1413719, 1585079, 1771559
Offset: 2

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 05 2002

Keywords

Comments

The Frobenius number of a numerical semigroup generated by relatively prime integers a_1, ..., a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since consecutive squares are relatively prime, they generate a numerical semigroup with a Frobenius number. The Frobenius number of a 2-generated semigroup has the formula ab-a-b.
Given the set {n, n+1, n+2, n+3} and starting at n=0, the sum of all possible products of the terms in all possible subsets = a(n+2). Example for n=5, 5+6+7+8=26; 5(6+7+8)+6*(7+8)+7*8=277; 5*(6*7+6*8+7*8)+6*7*8=1066; 5*6*7*8=1680 and the sum of these 15 possible subsets is 3023 = a(5+2) = a(7). The sum is a(n+2) = n^4 + 10*n^3 + 35*n^2 + 50*n + 23. - J. M. Bergot, Apr 17 2013

Examples

			a(2)=23 because 23 is not a nonnegative linear combination of 4 and 9, but all integers greater than 23 are.
		

Crossrefs

Programs

  • Maple
    seq(n^4+2*n^3-n^2-2*n-1, n=2..50); # Robert Israel, Nov 01 2015
  • Mathematica
    Table[(n^2-1)((n+1)^2-1)-1, {n,2,30}] (* T. D. Noe, Nov 27 2006 *)
    FrobeniusNumber/@Partition[Range[2,40]^2,2,1] (* Harvey P. Dale, Jul 25 2012 *)
  • PARI
    x='x+O('x^50); Vec(x^2*(23+4*x-6*x^2+4*x^3-x^4)/(1-x)^5) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = n^2*(n+1)^2-n^2-(n+1)^2 = n^4+2*n^3-n^2-2*n-1.
a(n) = Numerator of ((n + 2)! - (n - 2)!)/n!, n >=2. - Artur Jasinski, Jan 09 2007
G.f.: x^2*(23+4*x-6*x^2+4*x^3-x^4)/(1-x)^5. [Colin Barker, Feb 14 2012]
a(n) = (n-1)*n*(n+1)*(n+2) - 1 = A052762(n+2) - 1. - Jean-Christophe Hervé, Nov 01 2015

Extensions

Corrected by T. D. Noe, Nov 27 2006

A096345 Primes of the form p*q - p - q, where p and q are two successive primes.

Original entry on oeis.org

7, 23, 59, 191, 839, 1439, 1931, 5039, 8447, 11447, 23399, 26891, 36479, 41579, 46619, 57119, 59999, 77279, 110879, 163199, 232307, 323759, 370871, 414731, 470579, 521267, 566999, 606791, 664199, 678971, 776159, 824459, 835379, 879839, 919631, 1183739, 1190279
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 29 2004

Keywords

Comments

These primes are not the sum of two squares.
The number of terms less than 10^n: 1, 3, 5, 9, 18, 35, 83, 190, 425, 1105, 2962, 7695, 20187, 54280, 147464, 402660, 1116912, ..., . - Robert G. Wilson v, Apr 09 2008

Examples

			a(3)=59 because 7*11 - 7 - 11=59.
		

Crossrefs

Primes in A037165.

Programs

  • Mathematica
    lst = {}; p = q = 2; Do[p = q; q = NextPrime@q; r = p*q - p - q; If[ PrimeQ@r, AppendTo[lst, r]], {n, 300}]; lst (* Robert G. Wilson v, Apr 09 2008 *)
    Select[Times@@#-#[[1]]-#[[2]]&/@Partition[Prime[Range[300]],2,1],PrimeQ] (* Harvey P. Dale, Feb 17 2025 *)

Extensions

More terms from Robert G. Wilson v, Jul 01 2004

A069757 Frobenius number of the numerical semigroup generated by three consecutive pentagonal numbers.

Original entry on oeis.org

43, 133, 287, 1699, 921, 1569, 3006, 3197, 4129, 12915, 6445, 8621, 14087, 13549, 16753, 43144, 20783, 25793, 38854, 35769, 43321, 101747, 48147, 57764, 82815, 74393, 89017, 198120, 93689, 108983, 151478, 133957, 159025, 341659, 162180
Offset: 2

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 05 2002

Keywords

Comments

The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the greatest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since three consecutive pentagonal numbers are relatively prime, they generate a numerical semigroup with a Frobenius number.

Examples

			a(2)=43 because 43 is not a nonnegative linear combination of 5, 12 and 22, but all integers greater than 43 are.
		

Crossrefs

Programs

  • Mathematica
    FrobeniusNumber/@Partition[PolygonalNumber[5,Range[2,40]],3,1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 16 2018 *)

A069759 Frobenius number of the numerical semigroup generated by consecutive hex numbers.

Original entry on oeis.org

107, 647, 2159, 5399, 11339, 21167, 36287, 58319, 89099, 130679, 185327, 255527, 343979, 453599, 587519, 749087, 941867, 1169639, 1436399, 1746359, 2103947, 2513807, 2980799, 3509999, 4106699, 4776407
Offset: 1

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 08 2002

Keywords

Comments

The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since consecutive hex numbers are relatively prime, they generate a numerical semigroup with a Frobenius number. The Frobenius number of a 2-generated semigroup has the formula ab-a-b.

Examples

			a(1)=107 because 107 is not a nonnegative linear combination of 7 and 19, but all integers greater than 107 are.
		

Crossrefs

Programs

  • Mathematica
    FrobeniusNumber/@Partition[Table[3n^2+3n+1,{n,30}],2,1] (* Harvey P. Dale, Dec 25 2018 *)

Formula

a(n) = 9*n^4+36*n^3+45*n^2+18*n-1; with offset 2, a(n) = 9*n^4-9*n^2-1.
G.f.: x*(107+112*x-6*x^2+4*x^3-x^4)/(1-x)^5. - Colin Barker, Feb 14 2012

A069761 Frobenius number of the numerical semigroup generated by four consecutive tetrahedral numbers.

Original entry on oeis.org

41, 249, 253, 853, 1243, 1571, 2619, 5059, 5357, 9437, 11801, 13609, 18327, 27607, 28919, 41951, 49169, 54473, 67253, 90573, 94051, 124099, 140347, 152027, 178989, 226141, 233369, 291089, 321839, 343639, 392631, 475999, 488993, 587633, 639653, 676181, 756779
Offset: 2

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 09 2002

Keywords

Comments

The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since four consecutive tetrahedral numbers are relatively prime, they generate a numerical semigroup with a Frobenius number.

Examples

			a(2) = 41 because 41 is not a nonnegative linear combination of 4, 10, 20 and 35, but all integers greater than 43 are.
		

Crossrefs

Programs

  • Mathematica
    FrobeniusNumber/@Partition[Binomial[Range[2,50]+2,3],4,1] (* Harvey P. Dale, Jan 22 2012 *)

Formula

Conjecture: a(n)= +a(n-1) +4*a(n-6) -4*a(n-7) -6*a(n-12) +6*a(n-13) +4*a(n-18) -4*a(n-19) -a(n-24) +a(n-25). - R. J. Mathar, Aug 15 2025
Conjectured g.f.: x^2*(-4*x^2 -600*x^3 -390*x^4 -1680*x^9 -282*x^8 -496*x^11 -804*x^10 -208*x -312*x^15 -144*x^14 -768*x^13 -772*x^12-41 -32*x^18 -40*x^17 -102*x^16 -2*x^20 -8*x^19 -1608*x^7 +x^24 -884*x^6 -328*x^5) / ( (1+x)^4 *(x^2-x+1)^4 *(1+x+x^2)^4 *(x-1)^5 ). - R. J. Mathar, Aug 15 2025

Extensions

Sequence terms corrected and extended by Harvey P. Dale, Jan 22 2012
Offset corrected and example corrected by Harvey P. Dale, Jan 24 2012

A069762 Frobenius number of the numerical semigroup generated by three consecutive pyramidal numbers.

Original entry on oeis.org

51, 191, 609, 1324, 2813, 4711, 8576, 13894, 23319, 34165, 51661, 71126, 100529, 136239, 187543, 241586, 321251, 404839, 516704, 645358, 813141, 982651, 1221299, 1463734, 1767473, 2106271, 2524101, 2940909, 3500209, 4061663, 4736456, 5474526, 6352219, 7228469
Offset: 2

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 18 2002

Keywords

Comments

Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since three consecutive pyramidal numbers are relatively prime, they generate a numerical semigroup with a Frobenius number.

Examples

			a(2)=51 because 51 is not a nonnegative linear combination of 5, 14 and 30, but all integers greater than 51 are.
		

Crossrefs

Extensions

More terms from and offset corrected by Sean A. Irvine, May 19 2024
Previous Showing 11-20 of 27 results. Next