cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A373822 Sum of the n-th maximal run of first differences of odd primes.

Original entry on oeis.org

4, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 12, 4, 12, 2, 10, 2, 4, 2, 24, 4, 2, 4, 6, 2, 10, 18, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 12, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4, 2, 4
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-sums of A001223. For run-lengths instead of run-sums we have A333254.

Examples

			The odd primes are
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with sums a(n).
		

Crossrefs

Run-sums of A001223.
For run-lengths we have A333254, run-lengths of run-lengths A373821.
Dividing by two gives A373823.
A000040 lists the primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[3,1000],PrimeQ]]]

A376309 Run-lengths of the sequence of first differences of prime-powers.

Original entry on oeis.org

3, 1, 2, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The sequence of prime-powers (A246655) is:
  2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
  1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
with runs:
  (1,1,1),(2),(1,1),(2,2),(3),(1),(2),(4),(2,2,2,2),(1),(5),(4),(2),(4), ...
with lengths A376309 (this sequence).
		

Crossrefs

For runs of prime-powers increasing by one we have A174965.
For primes instead of prime-powers we have A333254.
For squarefree numbers instead of prime-powers we have A376306.
For compression instead of run-lengths we have A376308.
For run-sums instead of run-lengths we have A376310.
For positions of first appearances we have A376341, sorted A376340.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A024619 and A361102 list non-prime-powers, first differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373948 encodes compression using compositions in standard order.

Programs

  • Mathematica
    Length/@Split[Differences[Select[Range[100],PrimePowerQ]]]
  • PARI
    up_to = 20000;
    A376309list(up_to) = { my(v=vector(up_to), ppp=2, pd=1, d, rl=0, k=2, i=0); while(i<#v, k++; if(isprimepower(k), d = k-ppp; ppp = k; if(d == pd, rl++, i++; v[i] = rl; rl = 1; pd = d))); (v); };
    v376309 = A376309list(up_to);
    A376309(n) = v376309[n]; \\ Antti Karttunen, Jan 18 2025

Extensions

More terms from Antti Karttunen, Jan 18 2025

A376310 Run-sums of the sequence of first differences of prime-powers.

Original entry on oeis.org

3, 2, 2, 4, 3, 1, 2, 4, 8, 1, 5, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 12, 4, 2, 4, 6, 2, 10, 2, 4, 2, 24, 4, 2, 4, 6, 4, 8, 5, 1, 12, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 12, 4, 2, 4, 6, 2, 18, 4, 6, 8, 4, 8, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The sequence of prime-powers (A246655) is:
  2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
  1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
with runs:
  (1,1,1),(2),(1,1),(2,2),(3),(1),(2),(4),(2,2,2,2),(1),(5),(4),(2),(4), ...
with sums A376310 (this sequence).
		

Crossrefs

For primes instead of prime-powers we have A373822, halved A373823.
For squarefree numbers instead of prime-powers we have A376307.
For compression instead of run-sums we have A376308.
For run-lengths instead of run-sums we have A376309.
For positions of first appearances we have A376341, sorted A376340.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A024619 and A361102 list non-prime-powers, first differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373948 encodes compression using compositions in standard order.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[100],PrimePowerQ]]]

A376342 Positions of 1's in the run-compression (A376305) of the first differences (A076259) of the squarefree numbers (A005117).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 51, 54, 56, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 124, 126, 128, 130
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with run-compression (A376305):
  1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, ...
with ones at (A376342):
  1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 32, 34, 36, 38, ...
		

Crossrefs

Before compressing we had A076259.
Positions of 1's in A376305.
The version for nonsquarefree numbers gives positions of ones in A376312.
For prime instead of squarefree numbers we have A376343.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Join@@Position[First /@ Split[Differences[Select[Range[100],SquareFreeQ]]],1]

A373825 Position of first appearance of n in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 13, 11, 105, 57, 33, 69, 59, 29, 227, 129, 211, 341, 75, 321, 51, 45, 407, 313, 459, 301, 767, 1829, 413, 537, 447, 1113, 1301, 1411, 1405, 2865, 1709, 1429, 3471, 709, 2543, 5231, 1923, 679, 3301, 2791, 6555, 5181, 6345, 11475, 2491, 10633
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3, ...
with positions of first appearances a(n).
		

Crossrefs

Firsts of A373819 (run-lengths of A251092).
For antiruns we have A373827 (sorted A373826), firsts of A373820, run-lengths of A027833 (partial sums A029707, firsts A373401, sorted A373402).
The sorted version is A373824.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A176246, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000], PrimeQ],#1+2==#2&]//Most]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A373952 Number of integer compositions of n whose run-compression sums to 3.

Original entry on oeis.org

0, 0, 0, 3, 2, 4, 5, 6, 6, 9, 8, 10, 11, 12, 12, 15, 14, 16, 17, 18, 18, 21, 20, 22, 23, 24, 24, 27, 26, 28, 29, 30, 30, 33, 32, 34, 35, 36, 36, 39, 38, 40, 41, 42, 42, 45, 44, 46, 47, 48, 48, 51, 50, 52, 53, 54, 54, 57, 56, 58, 59, 60, 60, 63, 62, 64, 65, 66
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2024

Keywords

Comments

We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1).

Examples

			The a(3) = 3 through a(9) = 9 compositions:
  (3)   (112)  (122)   (33)     (1222)    (11222)    (333)
  (12)  (211)  (221)   (1122)   (2221)    (22211)    (12222)
  (21)         (1112)  (2211)   (11122)   (111122)   (22221)
               (2111)  (11112)  (22111)   (221111)   (111222)
                       (21111)  (111112)  (1111112)  (222111)
                                (211111)  (2111111)  (1111122)
                                                     (2211111)
                                                     (11111112)
                                                     (21111111)
		

Crossrefs

For partitions we appear to have A137719.
Column k = 3 of A373949, rows-reversed A373951.
The compression-sum statistic is represented by A373953, difference A373954.
A003242 counts compressed compositions (anti-runs).
A011782 counts compositions.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==3&]],{n,0,10}]
  • PARI
    A_x(N)={my(x='x+O('x^N)); concat([0, 0, 0], Vec(x^3 *(3-x-x^2-x^3)/((1-x)*(1-x^2)*(1-x^3))))}
    A_x(50) \\ John Tyler Rascoe, Jul 01 2024

Formula

G.f.: x^3 * (3-x-x^2-x^3)/((1-x)*(1-x^2)*(1-x^3)). - John Tyler Rascoe, Jul 01 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 01 2024

A374250 Greatest sum of run-compression of a permutation of the prime factors of n.

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 7, 13, 9, 8, 2, 17, 8, 19, 9, 10, 13, 23, 7, 5, 15, 3, 11, 29, 10, 31, 2, 14, 19, 12, 10, 37, 21, 16, 9, 41, 12, 43, 15, 11, 25, 47, 7, 7, 12, 20, 17, 53, 8, 16, 11, 22, 31, 59, 12, 61, 33, 13, 2, 18, 16, 67, 21, 26, 14, 71
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The prime factors of 24 are {2,2,2,3}, with permutations such as (2,2,3,2) whose run-compression sums to 7, so a(24) = 7.
The prime factors of 216 are {2,2,2,3,3,3}, with permutations such as (2,3,2,3,2,3) whose run-compression sums to 15, so a(216) = 15.
		

Crossrefs

Positions of 2 are A000079 (powers of two) except 1.
Positions of 3 are A000244 (powers of three) except 1.
For least instead of greatest sum of run-compression we have A008472.
For prime indices instead of factors we have A373956.
For number of runs instead of sum of run-compression we have A373957.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors (or prime indices).
A056239 adds up prime indices, row sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 lists run-compression of prime indices, sum A066328.
A335433 lists numbers whose prime indices are separable, complement A335448.
A373949 counts compositions by sum of run-compression, opposite A373951.
A374251 run-compresses standard compositions, sum A373953, rank A373948.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Max@@(Total[First/@Split[#]]& /@ Permutations[prifacs[n]]),{n,100}]

Formula

a(n) = A001414(n) iff n belongs to A335433 (the separable case, complement A335448), row-sums of A027746.

A376341 Position of first appearance of n in A057820, the sequence of first differences of prime-powers, or 0 if n does not appear.

Original entry on oeis.org

1, 5, 10, 13, 19, 25, 199, 35, 118, 48, 28195587, 61, 3745011205066703, 80, 6635, 312, 1079, 207, 3249254387600868788, 179, 43580, 216, 21151968922, 615, 762951923, 403, 1962, 466, 12371, 245, 1480223716, 783, 494890212533313, 1110, 2064590, 1235, 375744164943287809536
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Comments

For odd n either a(n) or a(n)+1 is in A024622 (unless a(n) = 0), corresponding to cases where the smaller or the larger term in the pair of consecutive prime powers, respectively, is a power of 2. - Pontus von Brömssen, Sep 27 2024

Examples

			a(4) = 13, because the first occurrence of 4 in A057820 is at index 13. The corresponding first pair of consecutive prime powers with difference 4 is (19, 23), and a(4) = A025528(23) = 13.
a(61) = A024622(96), because the first pair of consecutive prime powers with difference 61 is (2^96, 2^96+61), and A025528(2^96+61) = A024622(96).
		

Crossrefs

For compression instead of first appearances we have A376308.
For run-lengths instead of first appearances we have A376309.
For run-sums instead of first appearances we have A376310.
For squarefree numbers instead of prime-powers we have A376311.
The sorted version is A376340.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A024619 and A361102 list non-prime-powers, first differences A375708.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Differences[Select[Range[100],#==1||PrimePowerQ[#]&]];
    Table[Position[q,k][[1,1]],{k,mnrm[q]}]

Formula

A057820(a(n)) = n whenever a(n) > 0. - Pontus von Brömssen, Sep 24 2024

Extensions

Definition modified by Pontus von Brömssen, Sep 26 2024
More terms from Pontus von Brömssen, Sep 27 2024

A049579 Numbers k such that prime(k)+2 divides (prime(k)-1)!.

Original entry on oeis.org

4, 6, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 46, 47, 48, 50, 51, 53, 54, 55, 56, 58, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that prime(k+1) - prime(k) does not divide prime(k+1) + prime(k). These are the numbers k for which prime(k+1) - prime(k) > 2. - Thomas Ordowski, Mar 31 2022
If we prepend 1, the first differences are A251092 (see also A175632). The complement is A029707. - Gus Wiseman, Dec 03 2024

Examples

			prime(4) = 7, 6!+1 = 721 gives residue 1 when divided by prime(4)+2 = 9.
		

Crossrefs

The first differences are A251092 except first term, run-lengths A373819.
The complement is A029707.
Runs of terms differing by one have lengths A027833, min A107770, max A155752.
A000040 lists the primes, differences A001223 (run-lengths A333254, A373821).
A038664 finds the first prime gap of difference 2n.
A046933 counts composite numbers between primes.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    pnmQ[n_]:=Module[{p=Prime[n]},Mod[(p-1)!+1,p+2]==1]; Select[Range[ 100],pnmQ] (* Harvey P. Dale, Jun 24 2017 *)
  • PARI
    isok(n) = (((prime(n)-1)! + 1) % (prime(n)+2)) == 1; \\ Michel Marcus, Dec 31 2013

Extensions

Definition edited by Thomas Ordowski, Mar 31 2022

A373819 Run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 10, 2, 4, 1, 7, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 18, 3, 2, 1, 2, 1, 17, 2, 1, 2, 2, 1, 6, 1, 9, 1, 3, 1, 1, 1, 1, 1, 1, 1, 8, 1, 3, 1, 2, 2, 15, 1, 1, 1, 4, 1, 1, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2024

Keywords

Comments

Run-lengths of A251092.

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with runs:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths a(n).
		

Crossrefs

Run-lengths of A251092.
For antiruns we have A373820, run-lengths of A027833 (if we prepend 1).
Positions of first appearances are A373825, sorted A373824.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000], PrimeQ],#1+2==#2&]//Most]//Most
Previous Showing 21-30 of 42 results. Next