A284411
Least prime p such that more than half of all integers are divisible by n distinct primes not greater than p.
Original entry on oeis.org
3, 37, 42719, 5737850066077
Offset: 1
Exactly half of the integers are divisible by 2, so a(1)>2. Two-thirds of all integers are divisible by 2 or 3, so a(1) = 3.
- Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, pp. 13, 216 and 368.
- Jean-Marie De Koninck and Gérald Tenenbaum, Sur la loi de répartition du k-ième facteur premier d'un entier, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 133, No. 2 (2002), pp. 191-204.
- Gérald Tenenbaum, Some of Erdős' unconventional problems in number theory, thirty-four years later, Erdős Centennial, Janos Bolyai Math. Soc., 2013, 651-681. HAL Id: hal-01281530.
A286941
Irregular triangle read by rows: the n-th row corresponds to the totatives of the n-th primorial, A002110(n).
Original entry on oeis.org
1, 1, 5, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209
Offset: 1
The triangle starts
1;
1, 5;
1, 7, 11, 13, 17, 19, 23, 29;
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209;
Cf.
A002110,
A005867,
A048862,
A057588,
A279864,
A286941,
A286942,
A309497,
A038110,
A058250,
A329815.
-
Table[Function[P, Select[Range@ P, CoprimeQ[#, P] &]]@ Product[Prime@ i, {i, n}], {n, 4}] // Flatten (* Michael De Vlieger, May 18 2017 *)
-
row(n) = my(P=factorback(primes(n))); select(x->(gcd(x, P) == 1), [1..P]); \\ Michel Marcus, Jun 02 2020
A053144
Cototient of the n-th primorial number.
Original entry on oeis.org
1, 4, 22, 162, 1830, 24270, 418350, 8040810, 186597510, 5447823150, 169904387730, 6317118448410, 260105476071210, 11228680258518030, 529602053223499410, 28154196550210460730, 1665532558389396767070
Offset: 1
In the reduced residue system of q(4) = 2*3*5*7 - 210 the number of coprimes to 210 is 48, while a(4) = 210 - 48 = 162 is the number of values divisible by one of the prime factors of q(4).
-
Abs[Table[ Total[Table[(-1)^(k + 1)* Total[Apply[Times, Subsets[Table[Prime[n], {n, 1, m}], {k}], 2]], {k, 0, m - 1}]], {m, 1, 22}]] (* Geoffrey Critzer, Apr 08 2010 *)
Array[# - EulerPhi@ # &@ Product[Prime@ i, {i, #}] &, 17] (* Michael De Vlieger, Feb 17 2019 *)
-
a(n) = prod(k=1, n, prime(k)) - prod(k=1, n, prime(k)-1); \\ Michel Marcus, Feb 08 2019
A091440
Smallest number m such that m#/phi(m#) >= n, where m# indicates the primorial (A034386) of m and phi is Euler's totient function.
Original entry on oeis.org
1, 2, 3, 7, 13, 23, 43, 79, 149, 257, 461, 821, 1451, 2549, 4483, 7879, 13859, 24247, 42683, 75037, 131707, 230773, 405401, 710569, 1246379, 2185021, 3831913, 6720059, 11781551, 20657677, 36221753, 63503639, 111333529, 195199289, 342243479, 600036989
Offset: 1
7#/phi(7#) = (2*3*5*7)/(1*2*4*6) = 4.375 >= 4, 5#/phi(5#) = 3.75. Hence a(4) = 7.
-
prod=1; i=0; Table[While[prod
-
al(lim) = local(mm,n,m); mm=3; n=2; m=1; forprime(x=3,lim, n*=x; m*= (x-1); if (n\m >= mm, print1(x","); mm++)); /* This will generate all terms of this sequence from the 3rd onward, up to lim. The computation slows down for large values because of the size of the internal values. */ \\ Fred Schneider, Aug 13 2009, modified by Franklin T. Adams-Watters, Aug 29 2009
Sequence reference in name corrected by
Peter Munn, Apr 29 2017
A342479
a(n) is the numerator of the asymptotic density of numbers whose second smallest prime divisor (A119288) is prime(n).
Original entry on oeis.org
0, 1, 1, 1, 46, 44, 288, 33216, 613248, 151296, 391584768, 2383570944, 86830424064, 206470840320, 21270238986240, 987259950858240, 1262040231444480, 3022250536693923840, 3884253754215628800, 1102040800033347993600, 1892288242221318144000, 5616902226049109065728000
Offset: 1
The fractions begin with 0, 1/6, 1/10, 1/15, 46/1155, 44/1365, 288/12155, 33216/1616615, 613248/37182145, 151296/11849255, 391584768/33426748355, ...
a(1) = 0 since there are no numbers whose second smallest prime divisor is prime(1) = 2.
a(2)/A342480(2) = 1/6 since the numbers whose second smallest prime divisor is prime(2) = 3 are the positive multiples of 6.
a(3)/A342480(3) = 1/10 since the numbers whose second smallest prime divisor is prime(3) = 5 are the numbers congruent to {10, 15, 20} (mod 30) whose density is 3/30 = 1/10.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 337-341.
-
f[n_] := Module[{p = Prime[n], q}, q = Select[Range[p - 1], PrimeQ]; Plus @@ (1/(q - 1))*Times @@ ((q - 1)/q)/p]; Numerator @ Array[f, 30]
A342480
a(n) is the denominator of the asymptotic density of numbers whose second smallest prime divisor (A119288) is prime(n).
Original entry on oeis.org
1, 6, 10, 15, 1155, 1365, 12155, 1616615, 37182145, 11849255, 33426748355, 247357937827, 10141675450907, 25652473199353, 2928046583754721, 155186468939000213, 223317113839049087, 558516101711461766587, 796182527971658263007, 241532826894674874877669, 430046252763689411367557
Offset: 1
-
f[n_] := Module[{p = Prime[n], q}, q = Select[Range[p - 1], PrimeQ]; Plus @@ (1/(q - 1))*Times @@ ((q - 1)/q)/p]; Denominator @ Array[f, 30]
A256968
Let b(n) = Product_{i=1..n} p_i/(p_i - 1), p_i = i-th prime; a(n) = minimum k such that b(k) >= n.
Original entry on oeis.org
0, 0, 1, 2, 4, 6, 9, 14, 22, 35, 55, 89, 142, 230, 373, 609, 996, 1637, 2698, 4461, 7398, 12301, 20503, 34253, 57348, 96198, 161659, 272124, 458789, 774616, 1309627, 2216968, 3757384, 6375166, 10828012, 18409028, 31326514, 53354259, 90945529, 155142139
Offset: 0
The sequence b(n) for n >= 0 begins 1, 2, 3, 15/4, 35/8, 77/16, 1001/192, 17017/3072, 323323/55296, 676039/110592, 2800733/442368, 86822723/13271040, 3212440751/477757440, 131710070791/19110297600, 5663533044013/802632499200, ... = A060753/A038110. So a(3) = 2.
-
from sympy import prime
A256968_list, count, bn, bd = [0,0], 2, 1, 1
for k in range(1,10**4):
p = prime(k)
bn *= p
bd *= p-1
while bn >= count*bd:
A256968_list.append(k)
count += 1 # Chai Wah Wu, Apr 17 2015; corrected by Max Alekseyev, Jan 26 2025
A061671
Numbers n such that { x +- 2^k : 0 < k < 4 } are primes, where x = 210*n - 105.
Original entry on oeis.org
1, 77, 93, 209, 5197, 7695, 9307, 13442, 13524, 15445, 16192, 28600, 30970, 34228, 36388, 38391, 41625, 50127, 52795, 55546, 69146, 70538, 70642, 70747, 76314, 76642, 90079, 91416, 93496, 94288, 95773, 96415, 101530, 104049, 107559, 118031
Offset: 1
16057, 16061, 16063, 16067, 16069, 16073 are prime and (16065+105)/210= 77= a(2).
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, conjectures following th. 5
-
Select[Range[1, 1000000], Union[PrimeQ[(210*# - 105) + {-8, -4, -2, 2, 4, 8}]] == {True} &]
Select[Range[120000],AllTrue[210#-105+{-8,-4,-2,2,4,8},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 05 2019 *)
More terms from Larry Reeves (larryr(AT)acm.org), Jun 20 2001 and from
Frank Ellermann, Nov 26 2001. Mathematica script from Peter Bertok (peter(AT)bertok.com), Nov 27 2001.
A254196
a(n) is the numerator of Product_{i=1..n} (1/(1-1/prime(i))) - 1.
Original entry on oeis.org
1, 2, 11, 27, 61, 809, 13945, 268027, 565447, 2358365, 73551683, 2734683311, 112599773191, 4860900544813, 9968041656757, 40762420985117, 83151858555707, 5085105491885327, 341472595155548909, 24295409051193284539
Offset: 1
a(1)=1 because 1/2 + 1/4 + 1/8 + 1/16 + ... = 1/1.
a(2)=2 because 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + 1/12 + ... = 2/1.
a(3)=11 because 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/15 + ... = 11/4.
a(4)=27 because Sum_{n>=2} 1/A002473(n) = 27/8.
a(5)=61 because Sum_{n>=2} 1/A051038(n) = 61/16.
-
seq(numer(mul(1/(1-1/ithprime(i)),i=1..n)-1),n=1..20); # Robert Israel, Jan 28 2015
-
Numerator[Table[Product[1/(1 - 1/p), {p, Prime[Range[n]]}] - 1, {n,1,20}]]
b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
Numerator@ Table[b[n], {n, 1, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
-
a(n) = numerator(prod(i=1, n, (1/(1-1/prime(i)))) - 1); \\ Michel Marcus, Jun 29 2017
A308121
Irregular triangle read by rows: T(n,k) = A109395(n)*k-A076512(n)*A038566(n,k).
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 1, 2, 3, 4, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 1, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 1, 2, 3, 7, 14, 13, 4, 11, 2, 1, 8
Offset: 1
The sequence as an irregular triangle:
n/k 1, 2, 3, 4, ...
1: 0
2: 1
3: 1, 2
4: 1, 1
5: 1, 2, 3, 4
6: 2, 1
7: 1, 2, 3, 4, 5, 6
8: 1, 1, 1, 1
9: 1, 2, 1, 2, 1, 2
10: 3, 4, 1, 2
11: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12: 2, 1, 2, 1
13: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
14: 4, 5, 6, 1, 2, 3
15: 7, 14, 13, 4, 11, 2, 1, 8
...
Row sums: 0, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 60.
T(14,5) = A109395(14)*5 - A076512(14)*A038566(14,5) = 7*5 - 3*11 = 2.
T(210,2) = A109395(210)*2 - A076512(210)*A038566(210,2) = 35*2 - 8*11 = -18.
-
Flatten@ Table[With[{a = n/GCD[n, #], b = Numerator[#/n]}, MapIndexed[a First@ #2 - b #1 &, Flatten@ Position[GCD[Table[Mod[k, n], {k, n - 1}], n], 1] /. {} -> {1}]] &@ EulerPhi@ n, {n, 15}] (* Michael De Vlieger, Jun 06 2019 *)
-
vtot(n) = select(x->(gcd(n, x)==1), vector(n, k, k));
row(n) = my(q = eulerphi(n)/n, v = vtot(n)); vector(#v, k, denominator(q)*k - numerator(q)*v[k]); \\ Michel Marcus, May 14 2019
Comments