cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 91 results. Next

A352139 Expansion of e.g.f. 1/(exp(x) - log(1 - x)).

Original entry on oeis.org

1, -2, 6, -27, 161, -1205, 10799, -113043, 1351461, -18183781, 271784079, -4469044657, 80160267791, -1557710354083, 32597642189657, -730897865864471, 17480390183397209, -444198879957594857, 11951585821669838395, -339434402344422296117
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 19; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - Log[1 - x]), {x, 0, m}], x] (* Amiram Eldar, Mar 06 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-log(1-x))))
    
  • PARI
    a(n) = if(n==0, 1, -sum(k=1, n, ((k-1)!+1)*binomial(n, k)*a(n-k)));

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} ((k-1)! + 1) * binomial(n,k) * a(n-k).

A056110 Highest proper factor of n!-1, or a(n)=1 if n!-1 is not composite.

Original entry on oeis.org

1, 1, 1, 17, 1, 1, 1753, 32989, 125131, 3070523, 1, 3593203, 1, 76922021647, 6880233439, 18720390952421, 108514808571661, 186286524362683, 19499250680671, 2221345311813453913, 10311933282363373211, 498390560021687969, 991459181683, 104102080827724738147651, 19739193437746837432529
Offset: 2

Views

Author

Henry Bottomley, Jun 12 2000

Keywords

Crossrefs

Cf. A002582.

Programs

  • Mathematica
    pf[n_]:=Module[{c=n!-1},If[PrimeQ[c],1,c/FactorInteger[c][[1,1]]]]; Array[pf,30,2] (* Harvey P. Dale, Dec 13 2012 *)
  • PARI
    A056110(n)={n=factor(n!-1);if(norml2(n[,2])>1,factorback(n)/n[1,1],1)} \\ M. F. Hasler, Oct 31 2012

Formula

a(n) = A033312(n)/A054415(n)

Extensions

Edited and extended by M. F. Hasler, Oct 31 2012

A068482 Numbers n such that gcd(n!+1,2^n-1)>1.

Original entry on oeis.org

2, 3, 4, 6, 10, 12, 16, 18, 22, 23, 28, 30, 36, 39, 40, 42, 46, 51, 52, 58, 60, 63, 66, 70, 72, 78, 82, 88, 95, 96, 99, 100, 102, 106, 108, 112, 126, 130, 131, 135, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 183, 190, 191, 192, 196, 198, 210, 215, 222, 226
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

If n=p-1, p prime, then n is in the sequence.

Crossrefs

Cf. A000225 (2^n-1), A038507 (n!+1).

Programs

  • GAP
    Filtered([1..230],n->Gcd(Factorial(n)+1,2^n-1)>1); # Muniru A Asiru, Oct 16 2018
  • Maple
    select(n->gcd(factorial(n)+1,2^n-1)>1,[$1..230]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Select[Range[300],GCD[#!+1,2^#-1]>1&] (* Harvey P. Dale, Jan 31 2015 *)
  • PARI
    isok(n) = gcd(n!+1,2^n-1) > 1; \\ Michel Marcus, Oct 16 2018
    

A116891 a(n) = gcd(n! + 1, n^n + 1).

Original entry on oeis.org

2, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 79, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 103, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 127, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 191, 1, 1, 1, 199, 1, 1
Offset: 1

Views

Author

Giovanni Resta, Mar 01 2006

Keywords

Comments

Apparently all the values greater than 1 (cf. A116892) are prime numbers and are equal to 2n+1 with only 4 exceptions for n<82000 (cf. A116894).
From Antti Karttunen, Jul 22 2018: (Start)
The first duplicated value > 1 is 157519 = a(43755) = a(78759). Note that 43755 = 15*2917, while 78759 = 27*2917.
It seems that for the long time after a(1) = 2, all other terms > 1 occur only at such positions k that k+1 is not squarefree. However, this turns out to be false as a(208161) = 555097, and 208162 is a squarefree number.
(End)

Examples

			a(3) = gcd(3! + 1, 3^3 + 1) = gcd(7,28) = 7.
		

Crossrefs

Programs

A116892 Values of gcd(k!+1, k^k+1), when greater than 1.

Original entry on oeis.org

2, 7, 47, 79, 103, 127, 191, 199, 263, 367, 383, 431, 479, 503, 599, 607, 631, 727, 743, 823, 839, 863, 887, 991, 1087, 1151, 1319, 1367, 1423, 1487, 1511, 1583, 1663, 1783, 1823, 1871, 1951, 2039, 2063, 2111, 2143, 2287, 2311, 2383, 2423, 2447, 2503, 2551
Offset: 1

Views

Author

Giovanni Resta, Mar 01 2006

Keywords

Comments

Apart from the initial term (2) and few exceptional values (A116894) this sequence seems to coincide with A067658. The values of k for which the terms of this sequence are obtained are in A116893.

Examples

			gcd(1!+1,1^1+1) = 2 gives the first term;
gcd(3!+1,3^3+1) = gcd(7,28) = 7 gives the second, and so on.
		

Crossrefs

Programs

  • C
    See Links section in A116893.
  • Mathematica
    f[n_] := GCD[n! + 1, n^n + 1]; t = Array[f, 1295]; Rest@ Union@ t (* Robert G. Wilson v, Mar 09 2006 *)
  • PARI
    lista(nn) = for (n=1, nn, if ((g=gcd(n! + 1, n^n + 1)) != 1, print1(g, ", "))); \\ Michel Marcus, Jul 22 2018
    

Extensions

Entries checked by Robert G. Wilson v, Mar 09 2006

A116894 Numbers k such that gcd(k! + 1, k^k + 1) is neither 1 nor 2k+1.

Original entry on oeis.org

1, 5427, 41255, 43755, 208161, 496175, 497135
Offset: 1

Views

Author

Giovanni Resta, Mar 01 2006

Keywords

Comments

g(n) = gcd(n! + 1, n^n + 1) is almost always equal to 1 or to 2n+1. These are the known exceptions: g(1) = 2, g(5427) = 10453, g(41255) = 129341, g(43755) = 157519, g(208161) = 555097. - Hans Havermann, Mar 28 2006
a(8) > 1000000. - Nick Hobson, Feb 20 2024

Examples

			gcd(1! + 1, 1^1 + 1) = 2 and 2 != 2*1 + 1, so 1 belongs to the sequence.
		

Crossrefs

Programs

  • C
    // See Links section in A116893.

Extensions

a(5) from Hans Havermann, Mar 28 2006
a(6)-a(7) from Nick Hobson, Feb 20 2024

A139149 a(n) = (n!+2)/2.

Original entry on oeis.org

2, 4, 13, 61, 361, 2521, 20161, 181441, 1814401, 19958401, 239500801, 3113510401, 43589145601, 653837184001, 10461394944001, 177843714048001, 3201186852864001, 60822550204416001, 1216451004088320001, 25545471085854720001, 562000363888803840001
Offset: 2

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

Also the number of (not necessarily maximal) cliques in the (n-1)-(weak) Bruhat graph. - Eric W. Weisstein, Jul 29 2018

Examples

			(1!+2)/2 = 3/2 is not an integer.
a(2) = (2!+2)/2 = 2.
		

Crossrefs

a(n) = (n!+m)/m: A038507 (m=1), this sequence (m=2), A139150 (m=3), A139151 (m=4), A139152 (m=5), A139153 (m=6), A139154 (m=7), A139155 (m=8), A139156 (m=9), A139157 (m=10).
Offsets for above sequences are Kempner numbers A002034.
For smallest number of the form (m!+n)/n see A139148.

Programs

A301593 n can be represented the sum of a(n) distinct factorials. (If there is no such representation, a(n) = 0.)

Original entry on oeis.org

1, 1, 2, 0, 0, 1, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 0, 2, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2018

Keywords

Examples

			n |                        | a(n)
--+------------------------+-----
1 | 1!                     |  1
2 | 2!                     |  1
3 | 1! + 2!                |  2
6 | 3!                     |  1
7 | 3! + 1!                |  2
8 | 3! + 2!                |  2
9 | 3! + 2! + 1!           |  3
		

Crossrefs

Formula

a(n!) = 1, a(n!+1) = 2.

A354893 a(n) = n! * Sum_{d|n} d^(n - d) / (n/d)!.

Original entry on oeis.org

1, 3, 7, 73, 121, 12361, 5041, 5308801, 44452801, 5681370241, 39916801, 16800125569921, 6227020801, 35897693762810881, 2134168822456070401, 190139202281277849601, 355687428096001, 3563095308471181273190401, 121645100408832001
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^(n - #)/(n/#)! &]; Array[a, 19] (* Amiram Eldar, Jun 10 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^(n-d)/(n/d)!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp((k*x)^k)-1)/k^k)))

Formula

E.g.f.: Sum_{k>0} (exp((k * x)^k) - 1)/k^k.
If p is prime, a(p) = 1 + p! = A038507(p).

A036739 a(n) = (n!)^n+1.

Original entry on oeis.org

2, 2, 5, 217, 331777, 24883200001, 139314069504000001, 82606411253903523840000001, 6984964247141514123629140377600000001, 109110688415571316480344899355894085582848000000001, 395940866122425193243875570782668457763038822400000000000000000001
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) ~ (2*Pi)^(n/2) * n^(n^2 + n/2) / exp(n^2 - 1/12). - Vaclav Kotesovec, Mar 19 2018

Extensions

One more term from Harvey P. Dale, Apr 10 2012
Previous Showing 41-50 of 91 results. Next