cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A111648 a(n) = A001541(n)^2 + A001653(n+1)^2 + A002315(n)^2.

Original entry on oeis.org

3, 83, 2811, 95483, 3243603, 110187011, 3743114763, 127155714923, 4319551192611, 146737584833843, 4984758333158043, 169335045742539611, 5752406796913188723, 195412496049305876963
Offset: 0

Views

Author

Charlie Marion, Aug 24 2005

Keywords

Examples

			a(1) = 83 = 3^2+5^2+7^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35, -35, 1}, {3, 83, 2811}, 20] (* Paolo Xausa, Feb 06 2024 *)

Formula

a(n) = A038761(n)^2 + 2, e.g., 95483 = 309^2 + 2.
a(n) = A001652(2*n+1) - A001109(n+1)^2 - Sum_{k=1..n-1} A038723(2*n), e.g., 95483 = 137903 - 204^2 - (23 + 781).
For n > 0, 2*a(n) + A001652(2*n-1) = A001653(2*n+2), e.g., 2*2811 + 119 = 5741.
G.f.: -(11*x^2-22*x+3) / ((x-1)*(x^2-34*x+1)). - Colin Barker, Dec 14 2014 (Empirical g.f. confirmed for more terms and recurrence of source sequences. - Ray Chandler, Feb 05 2024)

A182191 a(n) = 6*a(n-1) - a(n-2) + 12 with n>1, a(0)=-1, a(1)=5.

Original entry on oeis.org

-1, 5, 43, 265, 1559, 9101, 53059, 309265, 1802543, 10506005, 61233499, 356895001, 2080136519, 12123924125, 70663408243, 411856525345, 2400475743839, 13990997937701, 81545511882379, 475282073356585, 2770146928257143, 16145599496186285, 94103450048860579
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 17 2012

Keywords

Comments

If p is a prime of the form 8*r +/- 3 then a(p) == 1 (mod p); if p is a prime of the form 8*r +/- 1 then a(p) == 5 (mod p).

Crossrefs

Programs

  • Magma
    I:=[-1,5]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)+12: n in [1..19]]; // Bruno Berselli, May 15 2012
    
  • Mathematica
    m = 19;n = 1; c = 0;
    list3 = Reap[While[c < 22, t = 6 n - m + 12; Sow[t];m = n; n = t;c++]][[2,1]]
    Table[LucasL[2*n, 2] +Fibonacci[2*n, 2] -3, {n, 0, 40}] (* G. C. Greubel, May 24 2021 *)
  • Sage
    [lucas_number1(2*n+2,2,-1) - 2*lucas_number1(2*n,2,-1) -3 for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

G.f.: -(1-12*x-x^2)/((1-x)*(1-6*x+x^2)). - Bruno Berselli, May 15 2012
a(n) = 2*A038723(n) - 3. -Bruno Berselli, May 16 2012
a(n) = -3 + (1/4)*( (4+sqrt(2))*(3+2*sqrt(2))^n + (4-sqrt(2))*(3-2*sqrt(2))^n ). - Colin Barker, Mar 05 2016
From G. C. Greubel, May 24 2021: (Start)
a(n) = A000129(2*n+2) - 2*A000129(2*n) - 3.
a(n) = A000129(2*n) + A002203(2*n) - 3. (End)

A266507 a(n) = 6*a(n - 1) - a(n - 2) with a(0) = 2, a(1) = 8.

Original entry on oeis.org

2, 8, 46, 268, 1562, 9104, 53062, 309268, 1802546, 10506008, 61233502, 356895004, 2080136522, 12123924128, 70663408246, 411856525348, 2400475743842, 13990997937704, 81545511882382, 475282073356588, 2770146928257146, 16145599496186288, 94103450048860582
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

Bisection of A078343 = A078343(2*n + 1).
Quadrisection of A266504 = A266504(4*n + 1).
Octasection of A266506 = A266506(8*n + 2).

Crossrefs

Bisection of A078343 = A078343(2n + 1).
Quadrisection of A266504 = A266504(4n + 1).
Octasection of A266506 = A266506(8n + 2).
Equals 2*A038723(n).

Programs

  • Magma
    I:=[2,8]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Mathematica
    LinearRecurrence[{6, -1}, {2, 8}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[2 (1 - 2 x)/(1 - 6 x + x^2), {x, 0, n}], {n, 0, 22}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    Vec(2*(1-2*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Dec 31 2015

Formula

a(n) = (-sqrt(2)*(1+sqrt(2))^(2*n+1) - 3 *(1-sqrt(2))^(2*n+1) - sqrt(2)*(1-sqrt(2))^(2*n+1) + 3*(1+sqrt(2))^(2*n+1))/sqrt(8).
G.f.: 2*(1-2*x) / (1-6*x+x^2). - Colin Barker, Dec 31 2015

A227792 Expansion of (1 + 6*x + 17*x^2 - x^3 - 3*x^4)/(1 - 6*x^2 + x^4).

Original entry on oeis.org

1, 6, 23, 35, 134, 204, 781, 1189, 4552, 6930, 26531, 40391, 154634, 235416, 901273, 1372105, 5253004, 7997214, 30616751, 46611179, 178447502, 271669860, 1040068261, 1583407981, 6061962064, 9228778026, 35331704123, 53789260175, 205928262674
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2013

Keywords

Comments

Also, values i where A067060(i)/i reaches a new maximum (conjectured).

Crossrefs

Cf. A041017.

Programs

  • Mathematica
    CoefficientList[Series[(1+6x+17x^2-x^3-3x^4)/(1-6x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,6,0,-1},{1,6,23,35,134},40] (* Harvey P. Dale, Jun 12 2021 *)
  • PARI
    a(n)=polcoeff((-3*x^4-x^3+17*x^2+6*x+1)/(x^4-6*x^2+1)+O(x^100),n)

Formula

G.f.: (1+6*x+17*x^2-x^3-3*x^4)/((1+2*x-x^2)*(1-2*x-x^2)).
a(2n) = A038723(n+1), n>0.
a(2n+1) = A001109(n+2).
a(n) = (1/4) * (A135532(n+3) + (-1)^n*A001333(n+2) ).

A334456 Number h of points and of blocks of nontrivial biplanes.

Original entry on oeis.org

7, 11, 16, 37, 56, 79, 121
Offset: 1

Views

Author

Stefano Spezia, Apr 30 2020

Keywords

Comments

A biplane is an incidence structure consisting of a set P of h points and a set of h blocks, each of which is a k-subset of P (block size k), such that every pair of points lies in exactly 2 blocks (see Alavi et al.).

Crossrefs

A334457 Block sizes k of nontrivial biplanes.

Original entry on oeis.org

4, 5, 6, 9, 11, 13, 16
Offset: 1

Views

Author

Stefano Spezia, Apr 30 2020

Keywords

Comments

A biplane is an incidence structure consisting of a set P of h points and a set of h blocks, each of which is an k-subset of P (block size k), such that every pair of points lies in exactly 2 blocks (see Alavi et al.).

Crossrefs

Previous Showing 11-16 of 16 results.