cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A121740 Solutions to the Pell equation x^2 - 17y^2 = 1 (y values).

Original entry on oeis.org

0, 8, 528, 34840, 2298912, 151693352, 10009462320, 660472819768, 43581196642368, 2875698505576520, 189752520171407952, 12520790632807348312, 826182429245113580640, 54515519539544688973928
Offset: 1

Views

Author

Rick L. Shepherd, Jul 31 2006

Keywords

Comments

After initial term this sequence bisects A041025. See A099370 for corresponding x values. a(n+1)/a(n) apparently converges to (4+sqrt(17))^2.
The first solution to the equation x^2 - 17*y^2 = 1 is (X(1); Y(1)) = (1, 0) and the other solutions are defined by: (X(n), Y(n))= (33*X(n-1) + 136*Y(n-1), 8*X(n-1) + 33*Y(n-1)) with n >= 2. - Mohamed Bouhamida, Jan 16 2020

Examples

			A099370(1)^2 - 17*a(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.
		

Crossrefs

Programs

  • Magma
    I:=[0, 8]; [n le 2 select I[n] else 66*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
    
  • Mathematica
    LinearRecurrence[{66,-1},{0,8},30] (* Vincenzo Librandi, Dec 18 2011 *)
  • Maxima
    makelist(expand(((33+8*sqrt(17))^n - (33-8*sqrt(17))^n) /(4*sqrt(17)/2)), n, 0, 16); /* Vincenzo Librandi, Dec 18 2011 */
  • PARI
    \\ Program uses fact that continued fraction for sqrt(17) = [4,8,8,...].
    print1("0, "); forstep(n=2,40,2,v=vector(n,i,if(i>1,8,4)); print1(contfracpnqn(v)[2,1],", "))
    

Formula

a(n) = ((33+8*sqrt(17))^(n-1) - (33-8*sqrt(17))^(n-1))/(2*sqrt(17)).
From Mohamed Bouhamida, Feb 07 2007: (Start)
a(n) = 65*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 67*(a(n-1) - a(n-2)) + a(n-3). (End)
From Philippe Deléham, Nov 18 2008: (Start)
a(n) = 66*a(n-1) - a(n-2) for n > 1; a(1)=0, a(2)=8.
G.f.: 8*x^2/(1 - 66*x + x^2). (End)
E.g.f.: (1/17)*exp(33*x)*(33*sqrt(17)*sinh(8*sqrt(17)*x) + 136*(1 - cosh(8*sqrt(17)*x))). - Stefano Spezia, Feb 08 2020

Extensions

Offset changed from 0 to 1 and g.f. adapted by Vincenzo Librandi, Dec 18 2011

A200069 a(n) = 4*a(n-1) + 13*a(n-2) for n>2, a(1)=1, a(2)=4.

Original entry on oeis.org

1, 4, 29, 168, 1049, 6380, 39157, 239568, 1467313, 8983636, 55009613, 336825720, 2062427849, 12628445756, 77325345061, 473471175072, 2899114186081, 17751582020260, 108694812500093, 665549816263752, 4075231827556217, 24953074921653644, 152790313444845397
Offset: 1

Views

Author

Sture Sjöstedt, Nov 13 2011

Keywords

Comments

De Moivres formula : a(n)=(r^n-s^n)/(r-s), for r>s gives sequences with integers if r and s are conjugates. With r=2+sqrt(17) and s=2-sqrt(17), a(n+1)/a(n) converges to 2+sqrt(17).

Examples

			a(3) = 4*4+13*1 = 29.
		

Crossrefs

Cf. A041025.

Programs

  • Haskell
    a200069 n = a200069_list !! (n-1)
    a200069_list = 1 : 4 : zipWith (+)
       (map (* 4) $ tail a200069_list) (map (* 13) a200069_list)
    -- Reinhard Zumkeller, Nov 15 2011
  • Mathematica
    LinearRecurrence[{4,13}, {1,4}, 50]

Formula

a(n) = ((2+sqrt(17))^n-(2-sqrt(17))^n)/(2*sqrt(17)).
G.f.: x/(1-4*x-13*x^2). - Bruno Berselli, Nov 15 2011

Extensions

More terms from Bruno Berselli, Nov 15 2011

A317028 Triangle read by rows: T(0,0) = 1; T(n,k) = 8 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 8, 64, 1, 512, 16, 4096, 192, 1, 32768, 2048, 24, 262144, 20480, 384, 1, 2097152, 196608, 5120, 32, 16777216, 1835008, 61440, 640, 1, 134217728, 16777216, 688128, 10240, 40, 1073741824, 150994944, 7340032, 143360, 960, 1, 8589934592, 1342177280, 75497472, 1835008, 17920, 48
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013615 ((1+8*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038279 ((8+x)^n).
The coefficients in the expansion of 1/(1-8x-x^2) are given by the sequence generated by the row sums.
The row sums are Denominators of continued fraction convergents to sqrt(17), see A041025.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 8.12310562561766054982... (a metallic mean), when n approaches infinity (see A176458: (4+sqrt(17))).

Examples

			Triangle begins:
1;
8;
64, 1;
512, 16;
4096, 192, 1;
32768, 2048, 24;
262144, 20480, 384, 1;
2097152, 196608, 5120, 32;
16777216, 1835008, 61440, 640, 1;
134217728, 16777216, 688128, 10240, 40;
1073741824, 150994944, 7340032, 143360, 960, 1;
8589934592, 1342177280, 75497472, 1835008, 17920, 48;
68719476736, 11811160064, 754974720, 22020096, 286720, 1344, 1;
549755813888, 103079215104, 7381975040, 251658240, 4128768, 28672, 56;
4398046511104, 893353197568, 70866960384, 2768240640, 55050240, 516096, 1792, 1;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98

Crossrefs

Row sums give A041025.
Cf. A001018 (column 0), A053539 (column 1), A081138 (column 2), A140802 (column 3), A172510 (column 4).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 8 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 8*T(n-1, k)+T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

A172346 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=8.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 65, 65, 1, 1, 528, 4290, 528, 1, 1, 4289, 283074, 283074, 4289, 1, 1, 34840, 18678595, 151727664, 18678595, 34840, 1, 1, 283009, 1232504195, 81326315267, 81326315267, 1232504195, 283009, 1, 1, 2298912, 81326598276
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2010

Keywords

Comments

Start from the generalized Fibonacci sequence A041025 and its partial products c(n) = 1, 1, 8, 520, 274560, 1177587840, 41027160345600,... Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 10, 132, 5348, 574728, 189154536, 165118204944, 441439547818768, 3130197658239760416, 67978275921898969849504,...

Examples

			1;
1, 1;
1, 8, 1;
1, 65, 65, 1;
1, 528, 4290, 528, 1;
1, 4289, 283074, 283074, 4289, 1;
1, 34840, 18678595, 151727664, 18678595, 34840, 1;
1, 283009, 1232504195, 81326315267, 81326315267, 1232504195, 283009, 1;
1, 2298912, 81326598276, 43591056675936, 354094776672518, 43591056675936, 81326598276, 2298912, 1;
		

Crossrefs

Cf. A010048 (m=1), A099927 (m=2), A172345 (m=7).

Programs

  • Mathematica
    Clear[f, c, a, t];
    f[0, a_] := 0; f[1, a_] := 1;
    f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a];
    c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
    t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
    Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
    Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]

A305534 Index of the smallest prime in the n-Fibonacci sequence, or the Lucas U(n,-1) sequence.

Original entry on oeis.org

3, 2, 2, 3, 2, 3, 2, 5, 29, 3, 2, 5, 2, 3, 23, 3, 2, 7, 2, 3, 29, 19, 2, 3, 83, 3, 53, 19, 2, 5, 2, 5, 5, 5479, 71, 3, 2, 17, 11, 3, 2, 37, 2, 31, 5, 11, 2, 5
Offset: 1

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

Smallest k such that the k-th Fibonacci polynomial evaluated at x=n is prime. (The first few Fibonacci polynomials are 1, x, x^2 + 1, x^3 + 2*x, x^4 + 3*x^2 + 1, x^5 + 4*x^3 + 3*x, ...)
All terms are primes, since if a divides b, then the a-th term of the n-Fibonacci sequence also divides the b-th term of the n-Fibonacci sequence.
Corresponding primes are 2, 2, 3, 17, 5, 37, 7, 4289, 726120289954448054047428229, 101, 11, 21169, 13, 197, 82088569942721142820383601, 257, 17, 34539049, 19, 401, ...
a(n) = 2 if and only if n is prime.
a(n) = 3 if and only if n^2 + 1 is prime (A005574), except n=2 (since 2 is the only prime p such that p^2 + 1 is also prime).
a(34) > 1024, does a(n) exist for all n >= 1? (However, 17 is the only prime in the first 1024 terms of the 4-Fibonacci sequence, and it seems that 17 is the only prime in the 4-Fibonacci sequence.)
a(35)..a(48) = 71, 3, 2, 17, 11, 3, 2, 37, 2, 31, 5, 11, 2, 5, a(50)..a(54) = 11, 11, 23, 2, 3, a(56) = 3, a(58)..a(75) = 5, 2, 47, 2, 5, 311, 13, 233, 3, 2, 5, 11, 5, 2, 7, 2, 3, 5. Unknown terms a(34), a(49), a(55), a(57), exceed 1024, if they exist.
a(49) > 20000, if it exists. - Giovanni Resta, Jun 06 2018

Crossrefs

Cf. A001605, A096650, A209493, which are the indices of the primes in the n-Fibonacci sequence for n = 1, 2, 3.
Cf. A005478, A086383, A201001, which are the primes in the n-Fibonacci sequence for n = 1, 2, 3.
Cf. A000045, A000129, A006190, A001076, A052918, A005668, A054413, A041025, A099371, A041041, A049666, A041061 (the n-Fibonacci sequence for n = 1 to 12).
Cf. A302990 (for n-step Fibonacci sequence instead of n-Fibonacci sequence).

Programs

  • PARI
    b(n,k)=([n,1;1,0]^k)[1,2]
    a(n)=for(k=1,2^12,if(ispseudoprime(b(n,k)),return(k)))

Extensions

a(34)-a(48) from Giovanni Resta, Jun 06 2018

A322129 Digital roots of A057084.

Original entry on oeis.org

1, 8, 2, 6, 5, 1, 4, 6, 7, 8, 8, 9, 8, 1, 7, 3, 4, 8, 5, 3, 2, 1, 1, 9, 1, 8, 2, 6, 5, 1, 4, 6, 7, 8, 8, 9, 8, 1, 7, 3, 4, 8, 5, 3, 2, 1, 1, 9, 1, 8, 2, 6, 5, 1, 4, 6, 7, 8, 8, 9, 8, 1, 7, 3, 4, 8, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Ondrej Janicko, Nov 27 2018

Keywords

Comments

Periodic with period 24. The cycle is in reverse order to that of the digital roots of the Fibonacci numbers (A030132).

Crossrefs

Cf. A010888 (digital root), A057084, A030132 (order of cycle digits reversed), A000045, A015454, A041025, A114479, A164546.

Programs

  • GAP
    A057084:=[1,8];; for n in [3..80] do A057084[n]:=8*(A057084[n-1]-A057084[n-2]);; od; a:=List(A057084,i->1+(i-1) mod 9); # Muniru A Asiru, Nov 29 2018
  • Mathematica
    digRoot[n_]:=FixedPoint[Total[IntegerDigits[#, 10]] &, n] ; digRoot/@LinearRecurrence[{8, -8}, {1, 8}, 100]  (* Amiram Eldar, Nov 29 2018 *)

Formula

a(n) = A010888(A041025(n)) for n > 0.
a(n) = A010888(A057084(n)) for n > 0.
a(n) = A010888(A015454(n+3)) for n > 0.
a(n) = A010888(A114479(n+5)) for n > 0.
a(n) = A010888(A164546(n+3)) for n > 0.
a(n) = A030132(24 - (n mod 24)). - Filip Zaludek, Dec 09 2018
Previous Showing 21-26 of 26 results.