cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A091761 a(n) = Pell(4n) / Pell(4).

Original entry on oeis.org

0, 1, 34, 1155, 39236, 1332869, 45278310, 1538129671, 52251130504, 1775000307465, 60297759323306, 2048348816684939, 69583562007964620, 2363792759454112141, 80299370259431848174, 2727814796061228725775, 92665403695822344828176, 3147895910861898495432209
Offset: 0

Views

Author

Paul Barry, Feb 06 2004

Keywords

Comments

A000129(k*n)/A000129(k) = ((sqrt(2)-1)^k(-1)^k-(sqrt(2)+1)^k)((sqrt(2)-1)^(k*n)(-1)^(k*n)-(sqrt(2)+1)^(k*n))/((sqrt(2)-1)^(2k)+(sqrt(2)+1)^(2k)-2(-1)^k).
All squares of the form (3m-1)^3 + (3m)^3 + (3m+1)^3 (cf. A116108) are given for m = 24 b, where b is a square of this sequence. From Ribenboim & McDaniel, it follows there are no squares > 1 in this sequence. - M. F. Hasler, Jun 05 2007
A divisibility sequence, cf. R. K. Guy's post to the SeqFan list. - M. F. Hasler, Feb 05 2013
a(n) gives all nonnegative solutions of the Pell equation b(n)^2 - 32*(3*a(n))^2 = +1, together with b(n) = A056771(n). - Wolfdieter Lang, Mar 09 2019

Crossrefs

A029547 is an essentially identical sequence, cf. formula.

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // G. C. Greubel, Mar 11 2019
  • Maple
    with (combinat):seq(fibonacci(4*n,2)/12, n=0..17); # Zerinvary Lajos, Apr 21 2008
  • Mathematica
    LinearRecurrence[{34,-1}, {0,1}, 20] (* G. C. Greubel, Mar 11 2019 *)
  • PARI
    A091761(n, x=[ -1,17],A=[17,72*4;1,17]) = vector(n,i,(x*=A)[1]) \\ M. F. Hasler, May 26 2007
    
  • PARI
    A091761(n)=([34,1;-1,0]^(n-1))[1,1] \\ M. F. Hasler, Jun 05 2007
    
  • Sage
    [lucas_number1(n,34,1) for n in range(0, 16)]# Zerinvary Lajos, Nov 07 2009
    

Formula

G.f.: x/(1-34*x+x^2).
a(n) = A000129(4n)/A000129(4).
a(n) = ((1+sqrt(2))^(4n) - (1-sqrt(2))^(4n))*sqrt(2)/48.
From M. F. Hasler, Jun 05 2007: (Start)
a(n) = n (mod 2^m) for any m >= 0.
a(n) = sinh(4*n*log(sqrt(2)+1))/(12*sqrt(2)).
a(n) = A[1,1], first element of the 2 X 2 matrix A = (34,1;-1,0)^(n-1). (End)
a(n) = 34*a(n-1) - a(n-2); a(0)=0, a(1)=1. - Philippe Deléham, Nov 03 2008
A029547(n) = a(n+1). - M. F. Hasler, Feb 05 2013
a(n) = sqrt((A056771(n)^2 - 1)/(32*9)), n >= 0. See the Pell remark above. - Wolfdieter Lang, Mar 11 2019
E.g.f.: exp(17*x)*sinh(12*sqrt(2)*x)/(12*sqrt(2)). - Stefano Spezia, Apr 16 2023
a(n) = A002965(8*n)/12. - Gerry Martens, Jul 14 2023

A041084 Numerators of continued fraction convergents to sqrt(50).

Original entry on oeis.org

7, 99, 1393, 19601, 275807, 3880899, 54608393, 768398401, 10812186007, 152139002499, 2140758220993, 30122754096401, 423859315570607, 5964153172084899, 83922003724759193, 1180872205318713601, 16616132878186749607, 233806732499933208099, 3289910387877251662993
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[50],30]] (* or *) LinearRecurrence[{14,1},{7,99},30] (* Harvey P. Dale, Aug 18 2013 *)
    CoefficientList[Series[(7 + x)/(1 - 14 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2013 *)

Formula

a(n) = 14*a(n-1)+a(n-2), n>1 ; a(0)=7, a(1)=99 . G.f.: (7+x)/(1-14*x-x^2). - Philippe Deléham, Nov 21 2008

Extensions

More terms from Colin Barker, Nov 04 2013

A142588 A trisection of A000129, the Pell numbers.

Original entry on oeis.org

0, 5, 70, 985, 13860, 195025, 2744210, 38613965, 543339720, 7645370045, 107578520350, 1513744654945, 21300003689580, 299713796309065, 4217293152016490, 59341817924539925, 835002744095575440, 11749380235262596085, 165326326037771920630, 2326317944764069484905
Offset: 0

Views

Author

Paul Curtz, Sep 22 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 5*(n-1) else 14*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Apr 13 2021
    
  • Mathematica
    LinearRecurrence[{14,1},{0,5},20] (* Harvey P. Dale, Jul 05 2019 *)
    Fibonacci[3*Range[0, 30], 2] (* G. C. Greubel, Apr 13 2021 *)
  • PARI
    concat(0, Vec(5*x/(1-14*x-x^2) + O(x^20))) \\ Colin Barker, Jan 25 2016
    
  • Sage
    [lucas_number1(3*n,2,-1) for n in (0..30)] # G. C. Greubel, Apr 13 2021

Formula

a(n) = A000129(3n).
From R. J. Mathar, Sep 22 2008: (Start)
G.f.: 5*x/(1-14*x-x^2).
a(n) = 5*A041085(n-1). (End)
a(n) = ( (7+5*sqrt(2))^n - (7-5*sqrt(2))^n )/( 2*sqrt(2) ). - Colin Barker, Jan 25 2016

Extensions

Changed offset and extended by R. J. Mathar, Sep 22 2008

A383742 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of g.f. x/(1 - A002203(k)*x + (-1)^k*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 6, 5, 4, 0, 1, 14, 35, 12, 5, 0, 1, 34, 197, 204, 29, 6, 0, 1, 82, 1155, 2772, 1189, 70, 7, 0, 1, 198, 6725, 39236, 39005, 6930, 169, 8, 0, 1, 478, 39203, 551532, 1332869, 548842, 40391, 408, 9, 0, 1, 1154, 228485, 7761996, 45232349, 45278310, 7722793, 235416, 985, 10
Offset: 0

Views

Author

Seiichi Manyama, May 07 2025

Keywords

Examples

			Square array begins:
  0,  0,    0,     0,       0,        0, ...
  1,  1,    1,     1,       1,        1, ...
  2,  2,    6,    14,      34,       82, ...
  3,  5,   35,   197,    1155,     6725, ...
  4, 12,  204,  2772,   39236,   551532, ...
  5, 29, 1189, 39005, 1332869, 45232349, ...
		

Crossrefs

Columns k=0..6 give A001477, A000129, A001109, A041085(n-1), A091761, A292423, A097731(n-1).
Rows n=0..5 give A000004, A000012, A002203, A383720, A383740, A383741.
Main diagonal gives A380083.
Cf. A028412.

Programs

  • Mathematica
    A[n_, k_] := Fibonacci[k*n, 2]/Fibonacci[k, 2]; A[n_, 0] := n; Table[A[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 08 2025 *)
  • PARI
    pell(n) = ([2, 1; 1, 0]^n)[2, 1];
    a(n, k) = if(k==0, n, pell(k*n)/pell(k));

Formula

A(0,k) = 0, A(1,k) = 1; A(n,k) = A002203(k) * A(n-1,k) - (-1)^k * A(n-2,k) for n > 1.
A(n,k) = Pell(k*n)/Pell(k) for k > 0.

A093144 Third binomial transform of Pell(3*n)/Pell(3).

Original entry on oeis.org

0, 1, 20, 350, 6000, 102500, 1750000, 29875000, 510000000, 8706250000, 148625000000, 2537187500000, 43312500000000, 739390625000000, 12622187500000000, 215474218750000000, 3678375000000000000
Offset: 0

Views

Author

Paul Barry, Mar 26 2004

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{20,-50},{0,1},30] (* Harvey P. Dale, Aug 04 2021 *)

Formula

G.f.: x/(1-20*x+50*x^2);
a(n) = ((10 + 5*sqrt(2))^n - (10 - 5*sqrt(2))^n)/(10*sqrt(2)).
Previous Showing 11-15 of 15 results.