cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A383488 Numbers k that have at least one divisor d_i(k) for which a divisor d_j(k) exists such that d_i(k) < d_j(k) < sigma(d_i(k)).

Original entry on oeis.org

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 170, 174, 176, 180, 186, 189, 192, 196, 198, 200, 204, 208, 210, 216
Offset: 1

Views

Author

Felix Huber, May 03 2025

Keywords

Comments

Numbers k (without multiplicity) that are multiples of lcm(c,i), where c is any composite and i is any integer from [c + 1, sigma(c) - 1].

Examples

			All multiples of 12 (A008594) are terms because 12 has the divisors 4 and 6 where sigma(4) = 7 > 6.
All multiples of 18 (A008600) are terms because 18 has the divisors 6 and 9 where sigma(6) = 12 > 9.
All multiples of 20 (A008602) are terms because 20 has the divisors 4 and 5 where sigma(4) = 7 > 5.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A383488:=proc(n)
        option remember;
        local k,i,L;
        if n=1 then
            12
        else
            for k from procname(n-1)+1 do
                L:=Divisors(k);
                for i to nops(L)-1 do
                    if sigma(L[i])>L[i+1] then
                        return k
                    fi
                od
            od
        fi;
    end proc;
    seq(A383488(n),n=1..57);

A096472 Numbers containing squares of Pythagorean triples in their divisor set.

Original entry on oeis.org

3600, 7200, 10800, 14400, 18000, 21600, 25200, 28800, 32400, 36000, 39600, 43200, 46800, 50400, 54000, 57600, 61200, 64800, 68400, 72000, 75600, 79200, 82800, 86400, 90000, 93600, 97200, 100800, 104400, 108000, 111600, 115200, 118800, 122400, 126000, 129600, 133200
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 13 2004

Keywords

Comments

a(n) = m * (A046083(k)*A046084(k)*A009000(k))^2 for appropriate, not necessarily unique m and k.

Examples

			5^2 + 12^2 = 13^2: 5^2, 12^2 and 13^2 are divisors of 608400 = (13*5*3*2^2)^2, therefore 608400 is a term.
		

Crossrefs

Cf. Pythagorean triples: A046083, A046084, A009000.

Programs

  • Mathematica
    Range[50]*3600 (* Paolo Xausa, Jul 01 2025 *)
  • PARI
    my(x='x+O('x^38)); Vec(3600*x/(1-x)^2) \\ Elmo R. Oliveira, Jun 30 2025

Formula

a(n) = n*60^2.
From Elmo R. Oliveira, Jun 30 2025: (Start)
G.f.: 3600*x/(1-x)^2.
E.g.f.: 3600*x*exp(x).
a(n) = 60*A169823(n) = 100*A044102(n).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

Name clarified by Tanya Khovanova, Jul 05 2021
More terms from Elmo R. Oliveira, Jun 30 2025

A158062 a(n) = 36*n^2 - 2*n.

Original entry on oeis.org

34, 140, 318, 568, 890, 1284, 1750, 2288, 2898, 3580, 4334, 5160, 6058, 7028, 8070, 9184, 10370, 11628, 12958, 14360, 15834, 17380, 18998, 20688, 22450, 24284, 26190, 28168, 30218, 32340, 34534, 36800, 39138, 41548, 44030, 46584, 49210, 51908
Offset: 1

Views

Author

Vincenzo Librandi, Mar 12 2009

Keywords

Comments

The identity (36*n - 1)^2 - (36*n^2 - 2*n)*6^2 = 1 can be written as (A044102(n+1) - 1)^2 - a(n)*6^2 = 1. - Vincenzo Librandi, Feb 11 2012
The continued fraction expansion of sqrt(a(n)) is [6n-1; {1, 4, 1, 12n-2}]. - Magus K. Chu, Nov 08 2022

Crossrefs

Cf. A044102.

Programs

  • Magma
    [36*n^2 - 2*n: n in [1..50]]
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {34, 140, 318}, 50] (* Vincenzo Librandi, Feb 11 2012 *)
  • PARI
    for(n=1, 50, print1(36*n^2 - 2*n ", ")); \\ Vincenzo Librandi, Feb 11 2012

Formula

G.f.: x*(-34 - 38*x)/(x-1)^3. - Vincenzo Librandi, Feb 11 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 11 2012

A214394 If n mod 6 = 0 then n/6 else n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 2, 13, 14, 15, 16, 17, 3, 19, 20, 21, 22, 23, 4, 25, 26, 27, 28, 29, 5, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 7, 43, 44, 45, 46, 47, 8, 49, 50, 51, 52, 53, 9, 55, 56, 57, 58, 59, 10, 61
Offset: 0

Views

Author

Jeremy Gardiner, Jul 15 2012

Keywords

Examples

			a(36) = 36/6 = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[If[Mod[n, 6] == 0, n/6, n], {n, 0, 50}] (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    a(n)=if(n%6,n,n/6) \\ G. C. Greubel, Oct 26 2017
    
  • PARI
    first(n) = my(res = vector(n, i, i-1)); forstep(i = 1, n, 6, res[i] \= 6); res \\ David A. Corneth, Oct 28 2017

Formula

a(n) = 2*a(n-6) - a(n-12). - G. C. Greubel, Oct 26 2017 [corrected by Georg Fischer, Mar 12 2020]
a(n) = A244414(n) when n is not a multiple of 36 (A044102). - Michel Marcus, Oct 28 2017
a(n) = floor(n/6) + sign(n mod 6) * (n - floor(n/6)). - Wesley Ivan Hurt, Oct 28 2017

A242570 a(n) = 252 * n.

Original entry on oeis.org

0, 252, 504, 756, 1008, 1260, 1512, 1764, 2016, 2268, 2520, 2772, 3024, 3276, 3528, 3780, 4032, 4284, 4536, 4788, 5040, 5292, 5544, 5796, 6048, 6300, 6552, 6804, 7056, 7308, 7560, 7812, 8064, 8316, 8568, 8820, 9072, 9324, 9576, 9828, 10080, 10332, 10584, 10836, 11088, 11340
Offset: 0

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

As lcm(1,2,3,...,9) = 2520, 10*a(n) + k is divisible by each k from 1 through 9.

Crossrefs

Programs

  • Mathematica
    252*Range[0, 49] (* Alonso del Arte, May 17 2014 *)
    LinearRecurrence[{2,-1},{0,252},50] (* Harvey P. Dale, Mar 25 2025 *)
  • PARI
    for(n=0,50,print(252*n))

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 252*x/(x-1)^2.
E.g.f.: 252*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A044102(n) = 9*A135628(n) = 12*A008603(n) = 14*A008600(n) = 18*A008596(n) = 21*A008594(n) = 28*A008591(n) = 36*A008589(n) = 252*A001477(n). (End)

A363436 Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2023

Keywords

Examples

			The array begins:
  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5,   6, ...
  0,  4,  8,  12,  16,  20,  24, ...
  0,  9, 18,  27,  36,  45,  54, ...
  0, 16, 32,  48,  64,  80,  96, ...
  0, 25, 50,  75, 100, 125, 150, ...
  0, 36, 72, 108, 144, 180, 216, ...
  ...
		

Crossrefs

Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.

Programs

  • Mathematica
    A[n_,k_]:=k n^2; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
Previous Showing 11-16 of 16 results.