cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A154222 Row sums of number triangle A154221.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 87, 200, 457, 1034, 2315, 5132, 11277, 24590, 53263, 114704, 245777, 524306, 1114131, 2359316, 4980757, 10485782, 22020119, 46137368, 96469017, 201326618, 419430427, 872415260, 1811939357, 3758096414, 7784628255, 16106127392, 33285996577
Offset: 0

Views

Author

Paul Barry, Jan 05 2009

Keywords

Crossrefs

Programs

  • Magma
    [(1/4)*(4*(n+1)+(n-1)*2^n+0^n): n in [0..35]]; // Vincenzo Librandi, Sep 07 2016
  • Mathematica
    Join[{1},LinearRecurrence[{6, -13, 12, -4}, {2, 4, 8,17}, 25]] (* or *) Table[(1/4)*( 4*(n+1) + (n-1)*2^n + 0^n), {n,0,25}] (* G. C. Greubel, Sep 06 2016 *)
  • PARI
    Vec((x^4-2*x^3+5*x^2-4*x+1)/((x-1)^2*(2*x-1)^2) + O(x^100)) \\ Colin Barker, Oct 11 2014
    

Formula

a(n) = (1/4)*( 4*(n+1) + (n-1)*2^n + 0^n).
From Colin Barker, Oct 11 2014: (Start)
a(n) = A045618(n-4) + 2^n for n>3.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n>4.
a(n) = (4 - 2^n + (4+2^n)*n)/4 for n>0.
G.f.: (x^4 - 2*x^3 + 5*x^2 - 4*x + 1) / ((x-1)^2*(2*x-1)^2).
(End)
E.g.f.: (1/4)*(1 + 4*(1 + x)*exp(x) + (2*x - 1)*exp(2*x)). - G. C. Greubel, Sep 06 2016

Extensions

More terms and xrefs from Colin Barker, Oct 11 2014

A206306 Riordan array (1, x/(1-3*x+2*x^2)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 06 2012

Keywords

Comments

The convolution triangle of the Mersenne numbers A000225. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
  1;
  0,    1;
  0,    3,    1;
  0,    7,    6,     1;
  0,   15,   23,     9,     1;
  0,   31,   72,    48,    12,     1;
  0,   63,  201,   198,    82,    15,    1;
  0,  127,  522,   699,   420,   125,   18,    1;
  0,  255, 1291,  2223,  1795,   765,  177,   21,   1;
  0,  511, 3084,  6562,  6768,  3840, 1260,  238,  24,  1;
  0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A206306
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return 0;
      else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
  • SageMath
    def T(n,k): # T = A206306
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022

Formula

Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A204089(n), A204091(n) for x = 0, 1, 2 respectively.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)

A279230 Expansion of 1/((1-x)^2*(1-2*x+2*x^2)).

Original entry on oeis.org

1, 4, 9, 14, 15, 8, -7, -22, -21, 12, 77, 142, 143, 16, -239, -494, -493, 20, 1045, 2070, 2071, 24, -4071, -8166, -8165, 28, 16413, 32798, 32799, 32, -65503, -131038, -131037, 36, 262181, 524326, 524327, 40, -1048535, -2097110, -2097109, 44, 4194349, 8388654, 8388655
Offset: 0

Views

Author

Philippe Deléham, Dec 08 2016

Keywords

Comments

Partial sums of A077860.

Crossrefs

Programs

  • PARI
    Vec(1 / ((1 - x)^2*(1 - 2*x + 2*x^2)) + O(x^50)) \\ Colin Barker, Aug 04 2017
    
  • PARI
    {a(n) = sum(k=0, n\2, (-1)^k*binomial(n+3, 2*k+3))} \\ Seiichi Manyama, Apr 07 2019

Formula

a(n) = 4*a(n-1) - 7*a(n-2) + 6*a(n-3) - 2*a(n-4) for n>3.
a(n) = 2*a(n-1) - 2*a(n-2) + n + 1, with a(-1) = a(-2) = 0.
a(n) = (3 - (1-i)^(1+n) - (1+i)^(1+n) + n) where i=sqrt(-1). - Colin Barker, Aug 04 2017
From Seiichi Manyama, Apr 07 2019: (Start)
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n+3,2*k+3).
a(n) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+1,j+1) * binomial(n-i+1,j+1). (End)

A279231 Expansion of g.f. 1/((1 - x)^2*(1 - 3*x + 3*x^2)).

Original entry on oeis.org

1, 5, 15, 34, 62, 90, 91, 11, -231, -716, -1444, -2172, -2171, 17, 6579, 19702, 39386, 59070, 59071, 23, -177123, -531416, -1062856, -1594296, -1594295, 29, 4782999, 14348938, 28697846, 43046754, 43046755, 35, -129140127, -387420452, -774840940, -1162261428
Offset: 0

Views

Author

Philippe Deléham, Dec 08 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-3x+3x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{5,-10,9,-3},{1,5,15,34},40] (* Harvey P. Dale, Aug 03 2025 *)
  • PARI
    Vec(1/((1-x)^2*(1-3*x+3*x^2)) + O(x^30)) \\ Colin Barker, Dec 08 2016

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 9*a(n-3) - 3*a(n-4) for n > 3.
a(n) = 3*a(n-1) - 3*a(n-2) + n + 1, with a(-1) = a(-2) = 0.
a(n) = 4 + n + 3^(1+n/2)*(sqrt(3)*sin(n*Pi/6) - cos(n*Pi/6)). - Stefano Spezia, Feb 11 2023
a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(n+4,3*k+4). - Taras Goy, Jan 03 2025
E.g.f.: exp(x)*(4 + x - 3*exp(x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))). - Stefano Spezia, Jan 03 2025

Extensions

Incorrect term corrected by Colin Barker, Dec 09 2016

A320998 Number of pseudo-square convex polyominoes with semiperimeter n.

Original entry on oeis.org

1, 12, 44, 142, 399, 1044, 2571, 6168, 14357, 32786, 73746, 163872, 360462, 786468, 1703949, 3670040, 7864353, 16777260, 35651579, 75497508, 159383591, 335544350, 704643087, 1476395064, 3087007733, 6442451004, 13421772816, 27917287460, 57982058547, 120259084318
Offset: 6

Views

Author

N. J. A. Sloane, Oct 30 2018

Keywords

Comments

The offset is not specified but appears to be 6.

Crossrefs

Programs

  • Maple
    seq(coeff(series(2*x^6/((1-x)^2*(1-2*x)^2)-add(k*x^(3*(k+1))/(1-x^(k+1))^2,k=1..ceil(n/3)),x,n+1), x, n), n = 6 .. 35); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    seq[n_] := 2*x^6/((1 - x)^2*(1 - 2*x)^2) - Sum[k*x^(3*(k + 1))/(1 - x^(k + 1))^2 + O[x]^(6 + n), {k, 1, Ceiling[n/3]}] // CoefficientList[#, x]& // Drop[#, 6]&;
    seq[30] (* Jean-François Alcover, Sep 07 2019, from PARI *)
  • PARI
    seq(n)={Vec(2*x^6/((1-x)^2*(1-2*x)^2) - sum(k=1, ceil(n/3), k*x^(3*(k+1))/(1-x^(k+1))^2 + O(x^(6+n))))} \\ Andrew Howroyd, Oct 31 2018

Formula

a(n) = 2*A045618(6+n) - A320999(n). - Andrew Howroyd, Oct 31 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 31 2018

A106194 Triangle read by rows, generated from binomial transforms of odd numbers.

Original entry on oeis.org

1, 4, 1, 12, 5, 1, 32, 17, 6, 1, 80, 49, 23, 7, 1, 192, 129, 72, 30, 8, 1, 448, 321, 201, 102, 38, 9, 1, 1024, 769, 522, 303, 140, 47, 10, 1, 2304, 1793, 1291, 825, 443, 187, 57, 11, 1, 5120, 4097, 3084, 2116, 1268, 630, 244, 68, 12, 1
Offset: 0

Views

Author

Gary W. Adamson, Apr 24 2005

Keywords

Comments

Appending the binomial transform of the natural numbers, (A001792: 1, 3, 8, 20, 48...) to A106194 as a leftmost column creates triangle A055249.
Placing zeros into the offset spaces, column 1: 0, 1, 5, 17, 49...; is the binomial transform of 0, 1, 3, 5...; and alternatively the binomial transform of 0, 0, 1, 2, 3...
n-th column is the binomial transform of 1, 3, 5...prefaced by n zeros. n-th column is alternatively the binomial transform of 1, 2, 3...prefaced by (n+1) zeros. The triangle of A106194 is identical to the binomial transform (of natural numbers, prefaced with zeros) triangle: A055249, deleting the leftmost column.

Examples

			First few rows of the triangle are:
1;
4, 1;
12, 5, 1;
32, 17, 6, 1;
80, 49, 23, 7, 1;
192, 129, 72, 30, 8, 1;
448, 321, 201, 102, 38, 9, 1;
...
		

Crossrefs

A124759 Sum of products of consecutive terms for compositions in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 2, 0, 3, 4, 3, 3, 4, 3, 3, 0, 4, 6, 4, 6, 6, 4, 4, 4, 6, 6, 5, 4, 5, 4, 4, 0, 5, 8, 5, 9, 8, 5, 5, 8, 9, 8, 7, 5, 6, 5, 5, 5, 8, 9, 7, 8, 8, 6, 6, 5, 7, 7, 6, 5, 6, 5, 5, 0, 6, 10, 6, 12, 10, 6, 6, 12, 12, 10, 9, 6, 7, 6, 6, 10, 12, 12, 10, 10, 10, 8, 8, 6, 8, 8, 7, 6, 7, 6, 6, 6, 10
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.

Examples

			Composition number 11 is 2,1,1; 2*1+1*1 = 3, so a(11) = 3.
The table starts:
0
0
0 1
0 2 2 2
		

Crossrefs

Cf. A066099, A070939, A011782 (row lengths), A045618 (row sums).

Formula

For a composition b(1),...,b(k), a(n) = Sum_{i=1}^{k-1} b(i) b(i+1).

A159755 Triangle of C. A. Laisant for k<=0 (see A062111 and A152920).

Original entry on oeis.org

0, -1, 1, -2, -1, 4, -3, -3, 0, 12, -4, -5, -4, 4, 32, -5, -7, -8, -4, 16, 80, -6, -9, -12, -12, 0, 48, 192, -7, -11, -16, -20, -16, 16, 128, 448, -8, -13, -20, -28, -32, -16, 64, 320, 1024, -9, -15, -24, -36, -48, -48, 0, 192, 768, 2304
Offset: 0

Views

Author

Philippe Deléham, Apr 21 2009

Keywords

Examples

			Triangle begins : 0 ; -1,1 ; -2,-1,4 ; -3,-3,0,12 ; -4,-5,-4,4,32 ; ...
		

Formula

Sum_{k=0..n}T(n,k)= A045618(n-2)for n>=2 . T(2n,n)=-A001787(n).

A317403 a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).

Original entry on oeis.org

1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1

Views

Author

Rigoberto Florez, Aug 26 2018

Keywords

Comments

Discriminant of Fibonacci polynomials.
Fibonacci polynomials are defined as F(0)=0, F(1)=1 and F(n)=x*F(n-1)+F(n-2) for n>1. Coefficients are given in triangle A168561 with offset 1.

Crossrefs

Programs

  • Magma
    [(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
  • Mathematica
    Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
  • PARI
    concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
    

A383841 Expansion of 1/((1-x) * (1-2*x) * (1-3*x))^2.

Original entry on oeis.org

1, 12, 86, 480, 2307, 10044, 40792, 157440, 584693, 2107596, 7420218, 25634880, 87207559, 292924668, 973531964, 3206704800, 10482373305, 34042285260, 109930177630, 353238247200, 1130137576331, 3601849005372, 11440208166816, 36225346150080, 114391746903037, 360325587293004
Offset: 0

Views

Author

Seiichi Manyama, May 12 2025

Keywords

Crossrefs

Column k=3 of A383843.

Programs

  • PARI
    a(n) = sum(k=0, n, stirling(k+3, 3, 2)*stirling(n-k+3, 3, 2));

Formula

a(n) = 12*a(n-1) - 58*a(n-2) + 144*a(n-3) - 193*a(n-4) + 132*a(n-5) - 36*a(n-6).
a(n) = Sum_{k=0..n} Stirling2(k+3,3) * Stirling2(n-k+3,3).
Previous Showing 21-30 of 33 results. Next