cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A188912 Binomial convolution of the binomial coefficients bin(3n,n)/(2n+1) (A001764).

Original entry on oeis.org

1, 2, 8, 42, 260, 1816, 13962, 116094, 1029124, 9609144, 93569808, 942642696, 9763181946, 103455616400, 1117379189926, 12264816349938, 136501928050116, 1537591374945704, 17503603786398576, 201128739609458904, 2330480521265639136
Offset: 0

Views

Author

Emanuele Munarini, Apr 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]/(2k+1)Binomial[3n-3k,n-k]/(2n-2k+1), {k,0,n}], {n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)/(2*k+1)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*binomial(3*k, k)*binomial(3*n-3*k, n-k)/((2*k+1)*(2*n-2*k+1)).
E.g.f.: F(1/3,2/3;1,3/2;27*x/4)^2, where F(a1,a2;b1,b2;z) is a hypergeometric series.
From Vaclav Kotesovec, Jun 10 2019: (Start)
Recurrence: 8*n^2*(n+1)*(2*n+1)^2*(9*n^3-54*n^2+84*n-35)*a(n) = 24*n*(324*n^7-2187*n^6+4689*n^5-4185*n^4+1464*n^3+122*n^2-223*n+44)*a(n-1) - 18*(n-1)*(3645*n^7-30618*n^6+96066*n^5-144585*n^4+103662*n^3-21834*n^2-10860*n+4480)*a(n-2) + 2187*(n-2)^2*(n-1)*(3*n-7)*(3*n-5)*(9*n^3-27*n^2+3*n+4)*a(n-3).
a(n) ~ 3^(3*n + 1) / (Pi * n^3 * 2^(n + 1)). (End)

A188913 Binomial convolution of the binomial coefficients bin(3n,n) (A005809) and bin(3n,n)/(2n+1) (A001764).

Original entry on oeis.org

1, 4, 24, 168, 1300, 10896, 97734, 928752, 9262116, 96091440, 1029267888, 11311712352, 126921365298, 1448378629600, 16760687848890, 196237061599008, 2320532776851972, 27676644749022672, 332568471941572944, 4022574792189178080
Offset: 0

Views

Author

Emanuele Munarini, Apr 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]Binomial[3n-3k,n-k]/(2n-2k+1), {k,0,n}], {n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0,n,binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1));
    vector(66, n, a(n-1)) /* show terms */ /* Joerg Arndt, Apr 13 2011 */

Formula

a(n) = sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k=0..n).
E.g.f.: F(1/3,2/3;1/2,1;27*x/4)*F(1/3,2/3;1,3/2;27*x/4), where F(a1,a2;b1,b2;z) is a hypergeometric series.
Recurrence: 8*n^2 * (2*n+1)^2 * (9*n^3 - 54*n^2 + 84*n - 35)*a(n) = 24*(324*n^7 - 2187*n^6 + 4689*n^5 - 4185*n^4 + 1464*n^3 + 122*n^2 - 223*n + 44)*a(n-1) - 18*(3645*n^7 - 30618*n^6 + 96066*n^5 - 144585*n^4 + 103662*n^3 - 21834*n^2 - 10860*n + 4480)*a(n-2) + 2187*(n-2)*(n-1)*(3*n-7)*(3*n-5)*(9*n^3 - 27*n^2 + 3*n + 4)*a(n-3). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 3^(3*n+1) / (Pi*n^2*2^(n+1)). - Vaclav Kotesovec, Feb 25 2014

A371400 Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).

Original entry on oeis.org

1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
Offset: 0

Views

Author

Peter Luschny, Mar 21 2024

Keywords

Comments

The main diagonal and column 0 of the triangle are the central binomial coefficients, which are the sums of the squares of Pascal's triangle entries. This sum representation can be generalized, and all terms can be seen as sums of coefficients of some polynomials. (See the Example section.)
To see this, consider T(n, k) as the value of the polynomials P(n, k)(x) at x = 1, where P(n, k)(x) = H([-n, -k], [1], x)*H([-n, -n + k], [1], x) and H denotes the hypergeometric sum 2F1. For instance column 0 is given by the row sums of A008459, and column 1 by the row sums of A371401.

Examples

			Triangle starts:
[0]    1;
[1]    2,     2;
[2]    6,     9,     6;
[3]   20,    40,    40,    20;
[4]   70,   175,   225,   175,    70;
[5]  252,   756,  1176,  1176,   756,   252;
[6]  924,  3234,  5880,  7056,  5880,  3234,   924;
[7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432;
.
Because of the symmetry, only the sum representation of terms with k <= n/2 are shown.
0:                 [1]
1:               [1+1]
2:             [1+4+1],               [1+4+4]
3:           [1+9+9+1],            [1+9+21+9]
4:      [1+16+36+16+1],       [1+16+66+76+16],        [1+16+76+96+36]
5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
		

Crossrefs

Column 0 and main diagonal are A000984.
Column 1 and subdiagonal are A097070.
Row sums are A045721.
The even bisection of the alternating row sums is A005809.
The central terms are A188662.

Programs

  • Maple
    T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}]

Formula

T(n, k) = A046899(n, k) * A092392(n, k).
T(n, k) = A046899(n, k) * A046899(n, n - k).
T(n, k) = A092392(n, k) * A092392(n, n - k).
T(n, k) = A371395(n, k) * (n + 1).
T(n, k) = hypergeom([-n, -k], [1], 1) * hypergeom([-n, -n + k], [1], 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A244038(n).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A371399(n).

A371774 a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-k+1,n-3*k).

Original entry on oeis.org

1, 4, 21, 121, 727, 4473, 27949, 176549, 1124332, 7205511, 46411744, 300183757, 1948255421, 12681654613, 82755728730, 541213820732, 3546268982757, 23276100962571, 153004515241866, 1007131032951572, 6637396253259291, 43791520333601111
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(3*n-k+1, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^2-x^3) * (1-x)^(2*n)).
a(n) = binomial(1+3*n, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [-1-3*n, 1+n, 3/2+n], 27/4). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: 2*n*(2*n - 1)*(671*n^4 - 4757*n^3 + 11743*n^2 - 11533*n + 3516)*a(n) = (44957*n^6 - 350256*n^5 + 997889*n^4 - 1236792*n^3 + 563834*n^2 + 39768*n - 60480)*a(n-1) - 10*(19459*n^6 - 156741*n^5 + 461272*n^4 - 575421*n^3 + 211099*n^2 + 106572*n - 60480)*a(n-2) + (93269*n^6 - 753150*n^5 + 2221631*n^4 - 2772678*n^3 + 999800*n^2 + 543408*n - 302400)*a(n-3) - 3*(3*n - 8)*(3*n - 7)*(671*n^4 - 2073*n^3 + 1498*n^2 + 366*n - 360)*a(n-4).
a(n) ~ 3^(3*n + 5/2) / (11 * sqrt(Pi*n) * 2^(2*n)). (End)

A124038 Triangle read by rows: T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.

Original entry on oeis.org

1, -2, 1, -1, -2, 1, 2, -2, -2, 1, 1, 4, -3, -2, 1, -2, 3, 6, -4, -2, 1, -1, -6, 6, 8, -5, -2, 1, 2, -4, -12, 10, 10, -6, -2, 1, 1, 8, -10, -20, 15, 12, -7, -2, 1, -2, 5, 20, -20, -30, 21, 14, -8, -2, 1, -1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 03 2006

Keywords

Examples

			Triangular sequence begins as:
   1;
  -2,   1;
  -1,  -2,   1;
   2,  -2,  -2,   1;
   1,   4,  -3,  -2,   1;
  -2,   3,   6,  -4,  -2,   1;
  -1,  -6,   6,   8,  -5,  -2,  1;
   2,  -4, -12,  10,  10,  -6, -2,  1;
   1,   8, -10, -20,  15,  12, -7, -2,  1;
  -2,   5,  20, -20, -30,  21, 14, -8, -2,  1;
  -1, -10,  15,  40, -35, -42, 28, 16, -9, -2, 1;
		

Crossrefs

Row reversal of: A374439.
Columns are related to: A000034 (k=0), A029578 (k=1), A131259 (k=2).
Diagonals are related to: A113679 (k=n-1), A022958 (k=n-2), A005843 (k=n-3), A000217 (k=n-4), -A002378 (k=n-5).
Sums include: (-1)^floor((n+1)/2)*A016116 (signed diagonal), A057079 (row), A119910 (signed row), (-1)^n*A130706 (diagonal).

Programs

  • Magma
    function T(n,k) // T = A124038
      if k lt 0 or k gt n then return 0;
      elif k ge n-2 then return k-n + (-1)^(n+k);
      else return T(n-1,k-1) - T(n-2,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 22 2025
  • Mathematica
    (* First program *)
    t[n_, m_, d_]:= If[n==m && n>1 && m>1, x, If[n==m-1 || n==m+1, -1, If[n==m== 1, x-2, 0]]];
    M[d_]:= Table[t[n,m,d], {n,d}, {m,d}];
    Join[{{1}}, Table[CoefficientList[Table[Det[M[d]], {d,10}][[d]], x], {d,10}]]//Flatten
    (* Second program *)
    T[n_, k_]:= T[n, k] = If[k<0 || k>n, 0, If[k>n-2, k-n+(-1)^(n-k), T[n-1, k- 1] -T[n-2,k]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 22 2025 *)
  • SageMath
    @CachedFunction
    def A124038(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 2*A124038(n-1,k) if n==1 else 0
        return A124038(n-1,k-1) - A124038(n-2,k) - h
    for n in (0..9): [A124038(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    
  • SageMath
    from sage.combinat.q_analogues import q_stirling_number2
    def A124038(n,k): return (1 + ((n-k)%2))*q_stirling_number2(n+1, n-k+1, -1)
    print(flatten([[A124038(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 22 2025
    

Formula

From G. C. Greubel, Jan 22 2025: (Start)
T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.
T(n, k) = (-1)^floor((n-k+1)/2)*(1 + (n-k mod 2))*qStirling2(n+1, n-k+1,-1).
T(2*n, n) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n)*A005809(n/2) - 2*(1-(-1)^n)* A045721((n-1)/2) ). (End)

Extensions

Edited by G. C. Greubel, Jan 22 2025

A252355 a(n) = sum_{k = 0..n-1} (-1)^k*C(2*n-1,k)*C(n-1,k), n>0.

Original entry on oeis.org

1, -2, 1, 8, -29, 34, 92, -512, 919, 818, -9151, 22472, -2924, -156872, 513736, -443392, -2457281, 11094658, -16502221, -31859752, 226433243, -475853006, -217535264, 4333621888, -12126499804, 5346234424
Offset: 1

Views

Author

L. Edson Jeffery, Dec 17 2014

Keywords

Comments

For each n > 0, a(n) is an integer such that A234839(p-n) == 2^(2 - 3*n)*a(n) (mod p), for all primes p >= 2*n+1 [Chamberland, et al., Thm. 2.3].

Crossrefs

Cf. A000040 (primes), A234839, A045721.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k*Binomial[2*n - 1, k]*Binomial[n - 1, k], {k, 0, n - 1}]; Table[a[n], {n, 26}]
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(2*n-1,k)*binomial(n-1,k)); \\ Michel Marcus, Jan 13 2016

Formula

a(n) = _2F_1(1-2*n,1-n;1;-1), n>0.
Recurrence: 2*(n-1)*(2*n-1)*(7*n-11)*a(n) = -(91*n^3 - 325*n^2 + 368*n - 128)*a(n-1) - 16*(n-2)*(2*n-3)*(7*n-4)*a(n-2). - Vaclav Kotesovec, Dec 17 2014
Lim sup n->infinity |a(n)|^(1/n) = 2*sqrt(2). - Vaclav Kotesovec, Dec 17 2014
exp( Sum_{n >= 1} 2*a(n)*x^n/n ) = 1 + 2*x - 2*x^3 + 4*x^4 - 2*x^5 - 12*x^6 + 40*x^7 - 44*x^8 - 98*x^9 + 520*x^10 - 882*x^11 - 640*x^12 + ... appears to have integer coefficients. - Peter Bala, Jan 04 2016

A387091 a(n) = binomial(9*n+1,n).

Original entry on oeis.org

1, 10, 171, 3276, 66045, 1370754, 28989675, 621216192, 13442126049, 293052087900, 6426898010533, 141629804643600, 3133614810784185, 69566517009302868, 1548833316392624625, 34569147570568156800, 773240476721553042345, 17328840976366636057110
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A387091[n_] := Binomial[9*n + 1, n]; Array[A387091, 20, 0] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    a(n) = binomial(9*n+1, n);

Formula

a(n) = Sum_{k=0..n} binomial(9*n-k,n-k).
G.f.: 1/(1 - x*g^7*(9+g)) where g = 1+x*g^9 is the g.f. of A062994.
G.f.: g^2/(9-8*g) where g = 1+x*g^9 is the g.f. of A062994.
G.f.: B(x)^2/(1 + 8*(B(x)-1)/9), where B(x) is the g.f. of A169958.
D-finite with recurrence +128*n*(8*n-5)*(4*n-1)*(8*n+1)*(2*n-1)*(8*n-1)*(4*n-3)*(8*n-3)*a(n) -81*(9*n-7)*(9*n-5)*(3*n-1)*(9*n-1)*(9*n+1)*(3*n-2)*(9*n-4)*(9*n-2)*a(n-1)=0. - R. J. Mathar, Aug 19 2025
a(n) ~ 3^(18*n+3) / (sqrt(Pi*n) * 2^(24*n+5)). - Vaclav Kotesovec, Aug 20 2025

A096793 Triangle read by rows: a(n,k) is the number of Dyck n-paths containing k odd-length ascents.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 3, 0, 10, 0, 1, 0, 21, 0, 20, 0, 1, 12, 0, 84, 0, 35, 0, 1, 0, 120, 0, 252, 0, 56, 0, 1, 55, 0, 660, 0, 630, 0, 84, 0, 1, 0, 715, 0, 2640, 0, 1386, 0, 120, 0, 1, 273, 0, 5005, 0, 8580, 0, 2772, 0, 165, 0, 1, 0, 4368, 0, 25025, 0, 24024, 0, 5148, 0, 220, 0, 1
Offset: 0

Views

Author

David Callan, Aug 17 2004

Keywords

Comments

a(n,k)=0 unless k and n have the same parity and 0 <= k <= n.
From Emeric Deutsch, Oct 05 2008: (Start)
Sum_{k=0..n} k*a(n,k) = A014300(n).
For the case of even-length ascents see A143950. (End)

Examples

			Table begins
.
n |k = 0    1    2    3    4    5    6    7    8
--+---------------------------------------------
0 |    1
1 |    0,   1
2 |    1,   0,   1
3 |    0,   4,   0,   1
4 |    3,   0,  10,   0,   1
5 |    0,  21,   0,  20,   0,   1
6 |   12,   0,  84,   0,  35,   0,   1
7 |    0, 120,   0, 252,   0,  56,   0,   1
8 |   55,   0, 660,   0, 630,   0,  84,   0,   1
.
a(4,0)=3 because the Dyck 4-paths containing no odd-length ascents are UUUUDDDD,UUDUUDDD,UUDDUUDD.
		

Crossrefs

The nonzero entries in column k=0 give A001764, in k=1 give A045721, in k=2 give A090763. The row sums are the Catalan numbers A000108.
Cf. A143950. - Emeric Deutsch, Oct 05 2008

Programs

  • Mathematica
    bi[n_, k_] := If[IntegerQ[k], Binomial[n, k], 0]; TableForm[Table[bi[(n+k)/2, (n-k)/2]bi[(3n-k)/2+1, (n+k)/2]/((3n-k)/2+1), {n, 0, 10}, {k, 0, n}]]

Formula

a(n, k) = binomial((n+k)/2, (n-k)/2)*binomial((3n-k)/2+1, (n+k)/2)/((3n-k)/2+1).
Equivalently, a(2n+k, k) = binomial(3n+k, k)*T(n) where T(n) = binomial(3n, n)/(2n+1) is A001764. Proof: Given a Dyck (2n+k)-path with k ascents of odd length, delete the peaks (UD) that terminate odd-length ascents. This is a mapping to Dyck (2n)-paths all of whose ascents have even length; there are T[n] such paths. The mapping is clearly onto and is binomial(3n+k, k)-to-1 as follows. A Dyck (2n)-path all of whose ascents have even length has exactly 3n+1 vertices that are (i) not incident with an upstep, or (ii) incident with an upstep and at even distance (possibly 0) from the start of the ascent they lie in. The k deleted UDs can be inserted arbitrarily at these vertices, repetition allowed, to get the preimages -- binomial(3n+k, k) choices.
G.f.: G(z, t) + H(z, t) where G satisfies G^3*(t^2 - 1)*z^2 - G^2*t*z*(2 + t*z) + G*(1 + 2*t*z) - 1 = 0 and H satisfies H^3*(t^2 - 1)*z^2 + H^2*t*z*(2 + t*z) - H*t^2*(1 - t*z) + t^3*z = 0. Here z marks size (n) and t marks number of odd-length ascents (k). G is gf for paths that start with an even-length ascent and H is gf for paths that start with an odd-length ascent. - David Callan, Sep 03 2005
From Emeric Deutsch, Oct 05 2008: (Start)
G.f. G=G(t,z) satisfies G = 1 + zG(t + zG)/(1 - z^2*G^2).
The trivariate g.f. H=H(t,s,z), where t(s) marks odd-length (even-length) ascents satisfies H = 1 + zH(t+szH)/(1-z^2*H^2). (End)

A137207 Number of exceptional sets of roots of type D_n. Also the number of unordered factorizations of the Coxeter element.

Original entry on oeis.org

12, 87, 584, 3835, 25008, 162792, 1060048, 6910695, 45119100, 295038315, 1932260256, 12673336052, 83236707232, 547388545740, 3604063891104, 23755630474079, 156740823815940, 1035157282013085, 6842413166034600, 45265133475699795, 299671339559444160, 1985322768625822080
Offset: 3

Views

Author

F. Chapoton, Mar 05 2008

Keywords

Examples

			a(3)=12 because D3 is the same as A3.
		

Crossrefs

Cf. A001764 for type A, A045721 for type B.

Programs

  • MuPAD
    modu_NC_D:=proc(n) begin (16*n*n-41*n+24)/n/(2*n-1)*binomial(3*n-5,n-2) end;
    
  • Sage
    def A137207(n):
        return (16*n*n-41*n+24)*binomial(3*n-5,n-2)/n/(2*n-1)

Formula

a(n) = (2*(n-1)/(2*n-1))*binomial(3*n-3,n-1)-binomial(3*n-5,n-2)+4*binomial(3*n-3,n-3).
a(n) = (16*n^2-41*n+24)/(n*(2*n-1))*binomial(3*n-5,n-2).

Extensions

a(22)-a(24) from Stefano Spezia, Feb 29 2024

A252501 Triangle T read by rows: T(n,k) = binomial(2*n+1,k)*binomial(n,k), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 3, 1, 10, 10, 1, 21, 63, 35, 1, 36, 216, 336, 126, 1, 55, 550, 1650, 1650, 462, 1, 78, 1170, 5720, 10725, 7722, 1716, 1, 105, 2205, 15925, 47775, 63063, 35035, 6435, 1, 136, 3808, 38080, 166600, 346528, 346528, 155584, 24310
Offset: 0

Views

Author

L. Edson Jeffery, Dec 17 2014

Keywords

Examples

			Triangle T begins:
.1
.1.....3
.1....10.....10
.1....21.....63......35
.1....36....216.....336......126
.1....55....550....1650.....1650......462
.1....78...1170....5720....10725.....7722.....1716
.1...105...2205...15925....47775....63063....35035.....6435
.1...136...3808...38080...166600...346528...346528...155584...24310
		

Crossrefs

Cf. A000012 (col. 1), A014105 (col. 2), A001700 (diag), A045721 (row sums).

Programs

  • Mathematica
    Flatten[Table[Binomial[2*n + 1, k]*Binomial[n, k], {n, 0, 8}, {k, 0, n}]] (* Replace Flatten[] with Grid[] to get the triangle. *)
Previous Showing 21-30 of 32 results. Next