A188912
Binomial convolution of the binomial coefficients bin(3n,n)/(2n+1) (A001764).
Original entry on oeis.org
1, 2, 8, 42, 260, 1816, 13962, 116094, 1029124, 9609144, 93569808, 942642696, 9763181946, 103455616400, 1117379189926, 12264816349938, 136501928050116, 1537591374945704, 17503603786398576, 201128739609458904, 2330480521265639136
Offset: 0
-
Table[Sum[Binomial[n,k]Binomial[3k,k]/(2k+1)Binomial[3n-3k,n-k]/(2n-2k+1), {k,0,n}], {n,0,22}]
-
makelist(sum(binomial(n,k)*binomial(3*k,k)/(2*k+1)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k,0,n),n,0,12);
A188913
Binomial convolution of the binomial coefficients bin(3n,n) (A005809) and bin(3n,n)/(2n+1) (A001764).
Original entry on oeis.org
1, 4, 24, 168, 1300, 10896, 97734, 928752, 9262116, 96091440, 1029267888, 11311712352, 126921365298, 1448378629600, 16760687848890, 196237061599008, 2320532776851972, 27676644749022672, 332568471941572944, 4022574792189178080
Offset: 0
-
Table[Sum[Binomial[n,k]Binomial[3k,k]Binomial[3n-3k,n-k]/(2n-2k+1), {k,0,n}], {n,0,22}]
-
makelist(sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k,0,n),n,0,12);
-
a(n) = sum(k=0,n,binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1));
vector(66, n, a(n-1)) /* show terms */ /* Joerg Arndt, Apr 13 2011 */
A371400
Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).
Original entry on oeis.org
1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
Offset: 0
Triangle starts:
[0] 1;
[1] 2, 2;
[2] 6, 9, 6;
[3] 20, 40, 40, 20;
[4] 70, 175, 225, 175, 70;
[5] 252, 756, 1176, 1176, 756, 252;
[6] 924, 3234, 5880, 7056, 5880, 3234, 924;
[7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432;
.
Because of the symmetry, only the sum representation of terms with k <= n/2 are shown.
0: [1]
1: [1+1]
2: [1+4+1], [1+4+4]
3: [1+9+9+1], [1+9+21+9]
4: [1+16+36+16+1], [1+16+66+76+16], [1+16+76+96+36]
5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
Column 0 and main diagonal are
A000984.
Column 1 and subdiagonal are
A097070.
The even bisection of the alternating row sums is
A005809.
-
T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n):
seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
-
T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1];
Table[T[n, k], {n, 0, 7}, {k, 0, n}]
A371774
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-k+1,n-3*k).
Original entry on oeis.org
1, 4, 21, 121, 727, 4473, 27949, 176549, 1124332, 7205511, 46411744, 300183757, 1948255421, 12681654613, 82755728730, 541213820732, 3546268982757, 23276100962571, 153004515241866, 1007131032951572, 6637396253259291, 43791520333601111
Offset: 0
A124038
Triangle read by rows: T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.
Original entry on oeis.org
1, -2, 1, -1, -2, 1, 2, -2, -2, 1, 1, 4, -3, -2, 1, -2, 3, 6, -4, -2, 1, -1, -6, 6, 8, -5, -2, 1, 2, -4, -12, 10, 10, -6, -2, 1, 1, 8, -10, -20, 15, 12, -7, -2, 1, -2, 5, 20, -20, -30, 21, 14, -8, -2, 1, -1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1
Offset: 0
Triangular sequence begins as:
1;
-2, 1;
-1, -2, 1;
2, -2, -2, 1;
1, 4, -3, -2, 1;
-2, 3, 6, -4, -2, 1;
-1, -6, 6, 8, -5, -2, 1;
2, -4, -12, 10, 10, -6, -2, 1;
1, 8, -10, -20, 15, 12, -7, -2, 1;
-2, 5, 20, -20, -30, 21, 14, -8, -2, 1;
-1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1;
-
function T(n,k) // T = A124038
if k lt 0 or k gt n then return 0;
elif k ge n-2 then return k-n + (-1)^(n+k);
else return T(n-1,k-1) - T(n-2,k);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 22 2025
-
(* First program *)
t[n_, m_, d_]:= If[n==m && n>1 && m>1, x, If[n==m-1 || n==m+1, -1, If[n==m== 1, x-2, 0]]];
M[d_]:= Table[t[n,m,d], {n,d}, {m,d}];
Join[{{1}}, Table[CoefficientList[Table[Det[M[d]], {d,10}][[d]], x], {d,10}]]//Flatten
(* Second program *)
T[n_, k_]:= T[n, k] = If[k<0 || k>n, 0, If[k>n-2, k-n+(-1)^(n-k), T[n-1, k- 1] -T[n-2,k]]];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 22 2025 *)
-
@CachedFunction
def A124038(n,k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A124038(n-1,k) if n==1 else 0
return A124038(n-1,k-1) - A124038(n-2,k) - h
for n in (0..9): [A124038(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
-
from sage.combinat.q_analogues import q_stirling_number2
def A124038(n,k): return (1 + ((n-k)%2))*q_stirling_number2(n+1, n-k+1, -1)
print(flatten([[A124038(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 22 2025
A252355
a(n) = sum_{k = 0..n-1} (-1)^k*C(2*n-1,k)*C(n-1,k), n>0.
Original entry on oeis.org
1, -2, 1, 8, -29, 34, 92, -512, 919, 818, -9151, 22472, -2924, -156872, 513736, -443392, -2457281, 11094658, -16502221, -31859752, 226433243, -475853006, -217535264, 4333621888, -12126499804, 5346234424
Offset: 1
-
a[n_] := Sum[(-1)^k*Binomial[2*n - 1, k]*Binomial[n - 1, k], {k, 0, n - 1}]; Table[a[n], {n, 26}]
-
a(n) = sum(k=0, n, (-1)^k*binomial(2*n-1,k)*binomial(n-1,k)); \\ Michel Marcus, Jan 13 2016
A387091
a(n) = binomial(9*n+1,n).
Original entry on oeis.org
1, 10, 171, 3276, 66045, 1370754, 28989675, 621216192, 13442126049, 293052087900, 6426898010533, 141629804643600, 3133614810784185, 69566517009302868, 1548833316392624625, 34569147570568156800, 773240476721553042345, 17328840976366636057110
Offset: 0
A096793
Triangle read by rows: a(n,k) is the number of Dyck n-paths containing k odd-length ascents.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 3, 0, 10, 0, 1, 0, 21, 0, 20, 0, 1, 12, 0, 84, 0, 35, 0, 1, 0, 120, 0, 252, 0, 56, 0, 1, 55, 0, 660, 0, 630, 0, 84, 0, 1, 0, 715, 0, 2640, 0, 1386, 0, 120, 0, 1, 273, 0, 5005, 0, 8580, 0, 2772, 0, 165, 0, 1, 0, 4368, 0, 25025, 0, 24024, 0, 5148, 0, 220, 0, 1
Offset: 0
Table begins
.
n |k = 0 1 2 3 4 5 6 7 8
--+---------------------------------------------
0 | 1
1 | 0, 1
2 | 1, 0, 1
3 | 0, 4, 0, 1
4 | 3, 0, 10, 0, 1
5 | 0, 21, 0, 20, 0, 1
6 | 12, 0, 84, 0, 35, 0, 1
7 | 0, 120, 0, 252, 0, 56, 0, 1
8 | 55, 0, 660, 0, 630, 0, 84, 0, 1
.
a(4,0)=3 because the Dyck 4-paths containing no odd-length ascents are UUUUDDDD,UUDUUDDD,UUDDUUDD.
-
bi[n_, k_] := If[IntegerQ[k], Binomial[n, k], 0]; TableForm[Table[bi[(n+k)/2, (n-k)/2]bi[(3n-k)/2+1, (n+k)/2]/((3n-k)/2+1), {n, 0, 10}, {k, 0, n}]]
A137207
Number of exceptional sets of roots of type D_n. Also the number of unordered factorizations of the Coxeter element.
Original entry on oeis.org
12, 87, 584, 3835, 25008, 162792, 1060048, 6910695, 45119100, 295038315, 1932260256, 12673336052, 83236707232, 547388545740, 3604063891104, 23755630474079, 156740823815940, 1035157282013085, 6842413166034600, 45265133475699795, 299671339559444160, 1985322768625822080
Offset: 3
a(3)=12 because D3 is the same as A3.
-
modu_NC_D:=proc(n) begin (16*n*n-41*n+24)/n/(2*n-1)*binomial(3*n-5,n-2) end;
-
def A137207(n):
return (16*n*n-41*n+24)*binomial(3*n-5,n-2)/n/(2*n-1)
A252501
Triangle T read by rows: T(n,k) = binomial(2*n+1,k)*binomial(n,k), n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 3, 1, 10, 10, 1, 21, 63, 35, 1, 36, 216, 336, 126, 1, 55, 550, 1650, 1650, 462, 1, 78, 1170, 5720, 10725, 7722, 1716, 1, 105, 2205, 15925, 47775, 63063, 35035, 6435, 1, 136, 3808, 38080, 166600, 346528, 346528, 155584, 24310
Offset: 0
Triangle T begins:
.1
.1.....3
.1....10.....10
.1....21.....63......35
.1....36....216.....336......126
.1....55....550....1650.....1650......462
.1....78...1170....5720....10725.....7722.....1716
.1...105...2205...15925....47775....63063....35035.....6435
.1...136...3808...38080...166600...346528...346528...155584...24310
-
Flatten[Table[Binomial[2*n + 1, k]*Binomial[n, k], {n, 0, 8}, {k, 0, n}]] (* Replace Flatten[] with Grid[] to get the triangle. *)
Comments