cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 65 results. Next

A212971 Number of triples (w,x,y) with all terms in {0,...,n} and w < floor((x+y)/3).

Original entry on oeis.org

0, 0, 3, 11, 25, 48, 82, 128, 189, 267, 363, 480, 620, 784, 975, 1195, 1445, 1728, 2046, 2400, 2793, 3227, 3703, 4224, 4792, 5408, 6075, 6795, 7569, 8400, 9290, 10240, 11253, 12331, 13475, 14688, 15972, 17328, 18759, 20267, 21853, 23520
Offset: 0

Views

Author

Clark Kimberling, Jun 03 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w < Floor[(x + y)/3], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212971*)
    LinearRecurrence[{3,-3,2,-3,3,-1},{0,0,3,11,25,48},50] (* Harvey P. Dale, Aug 24 2021 *)

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
G.f.: (x^2)*(3 + 2*x + x^2)/((1 + x + x^2)*(1-x)^4).
a(n) = (n+1)^3 - A212972(n).
From Ayoub Saber Rguez, Dec 11 2023: (Start)
a(n) = A045991(n+1) - A212974(n).
a(n) = (n^3 + n^2 - n - 1 + (((n+1) mod 3) mod 2))/3. (End)

A304487 a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n) mod 2))/6.

Original entry on oeis.org

1, 4, 15, 36, 73, 128, 207, 312, 449, 620, 831, 1084, 1385, 1736, 2143, 2608, 3137, 3732, 4399, 5140, 5961, 6864, 7855, 8936, 10113, 11388, 12767, 14252, 15849, 17560, 19391, 21344, 23425, 25636, 27983, 30468, 33097, 35872, 38799, 41880, 45121, 48524, 52095
Offset: 1

Views

Author

Stefano Spezia, Aug 17 2018

Keywords

Comments

a(n) is the trace of an n X n matrix A in which the entries are 1 through n^2, spiraling inward starting with 1 in the (1,1)-entry (proved).
The first three terms of a(n) coincide with those of A317614.

Examples

			For n = 1 the matrix A is
   1
with trace Tr(A) = a(1) = 1.
For n = 2 the matrix A is
   1, 2
   4, 3
with Tr(A) = a(2) = 4.
For n = 3 the matrix A is
   1, 2, 3
   8, 9, 4
   7, 6, 5
with Tr(A) = a(3) = 15.
For n = 4 the matrix A is
   1,  2,  3, 4
  12, 13, 14, 5
  11, 16, 15, 6
  10,  9,  8, 7
with Tr(A) = a(4) = 36.
		

Crossrefs

Cf. A126224 (determinant of the matrix A), A317298 (first differences).

Programs

  • GAP
    a_n:=List([1..43], n->(3 + 2*n - 3*n^2 + 4*n^3 - 3*RemInt(-1 + n, 2))/6);
    
  • GAP
    List([1..43],n->(3+2*n-3*n^2+4*n^3-3*((-1+n) mod 2))/6); # Muniru A Asiru, Sep 17 2018
  • Magma
    I:=[1,4,15,36,73]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..43]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    seq((3+2*n-3*n^2+4*n^3-3*modp((-1+n),2))/6,n=1..43); # Muniru A Asiru, Sep 17 2018
  • Mathematica
    Table[1/6 (3 + 2 n - 3 n^2 + 4 n^3 - 3 Mod[-1 + n, 2]), {n, 1, 43}] (* or *)
    CoefficientList[ Series[x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)), {x, 0, 43}], x] (* or *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {1, 4, 15, 36, 73}, 43]
  • Maxima
    a(n):=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6$ makelist(a(n), n, 1, 43);
    
  • PARI
    Vec(x*(1 + x + 5*x^2 + x^3)/((-1 + x)^4*(1 + x)) + O(x^44))
    
  • PARI
    a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n)%2))/6
    

Formula

a(n) = A045991(n) - Sum_{k=2..n-1} A085046(k) for n > 2 (proved).
G.f.: x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)).
a(n) + a(n + 1) = A228958(2*n + 1).
From Colin Barker, Aug 17 2018: (Start)
a(n) = (2*n - 3*n^2 + 4*n^3) / 6 for n even.
a(n) = (3 + 2*n - 3*n^2 + 4*n^3) / 6 for n odd.
a(n) = 3*a(n - 1) - 2*a(n - 2) - 2*a(n - 3) + 3*a(n - 4) - a(n - 5) for n > 5.
(End)
E.g.f.: (1/12)*exp(-x)*(-3 + exp(2*x)*(3 + 6*x + 18*x^2 + 8*x^3)). - Stefano Spezia, Feb 10 2019

A132998 a(n) = n^4 - n^3 - n^2.

Original entry on oeis.org

0, -1, 4, 45, 176, 475, 1044, 2009, 3520, 5751, 8900, 13189, 18864, 26195, 35476, 47025, 61184, 78319, 98820, 123101, 151600, 184779, 223124, 267145, 317376, 374375, 438724, 511029, 591920, 682051, 782100, 892769
Offset: 0

Views

Author

Omar E. Pol, Nov 01 2007

Keywords

Examples

			a(7)=2009 because 7^4=2401, 7^3=343, 7^2=49 and we can write 2401-343-49=2009.
		

Crossrefs

Programs

Formula

a(n) = n^4 - n^3 - n^2.
G.f.: x*(-1+9*x+15*x^2+x^3)/(1-x)^5. - R. J. Mathar, Nov 14 2007

A134631 a(n) = 5*n^5 - 3*n^3 + 2*n^2. Coefficients and exponents are the prime numbers in decreasing order.

Original entry on oeis.org

0, 4, 144, 1152, 4960, 15300, 38304, 83104, 162432, 293220, 497200, 801504, 1239264, 1850212, 2681280, 3787200, 5231104, 7085124, 9430992, 12360640, 15976800, 20393604, 25737184, 32146272, 39772800, 48782500, 59355504, 71686944, 85987552, 102484260, 121420800, 143058304, 167675904, 195571332, 227061520
Offset: 0

Views

Author

Omar E. Pol, Nov 04 2007

Keywords

Examples

			a(4)=4960 because 4^5=1024, 5*1024=5120, 4^3=64, 3*64=192, 4^2=16, 2*16=32 and we can write 5120 - 192 + 32 = 4960.
		

Crossrefs

Programs

  • Magma
    [5*n^5-3*n^3+2*n^2: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
  • Mathematica
    Table[5n^5-3n^3+2n^2,{n,0,40}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,4,144,1152,4960,15300},40] (* Harvey P. Dale, Jan 20 2023 *)

Formula

a(n) = 5*n^5 - 3*n^3 + 2*n^2.
G.f.: 4x*(1+30x+87x^2+32x^3)/(1-x)^6. - R. J. Mathar, Nov 14 2007

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A138667 Values of x in solutions (x,y,z) to the Diophantine equation x^3-x^2+y^3-y^2=z^3-z^2, with 1

Original entry on oeis.org

64, 94, 160, 256, 268, 301, 333, 390, 682, 864, 1015, 1151, 1188, 2068, 3094, 4165, 4177, 5452, 5959, 6201, 6490, 8181, 9334, 11440, 11561, 11628, 14116, 14416, 17220, 18684, 18940, 19360, 20856, 21825, 25880, 26865, 27501, 28630, 28850, 28858
Offset: 1

Views

Author

Manuel Valdivia, Apr 17 2008

Keywords

Comments

A045991(x)=A045991(z)-A045991(y), y=A138668(n) and z=A138669(n).

Examples

			Solutions to the Diophantine equation in lexicographic order: {x, y, z}: {64, 100, 108}, {94, 301, 304}, {160, 226, 250}, {256, 305, 356}, {268, 341, 389}, {301, 770, 785}, {333, 370, 444}, {390, 876, 901},...
		

Crossrefs

A138668 Values of y in solutions (x,y,z) to the Diophantine equation x^3-x^2+y^3-y^2=z^3-z^2, with 1

Original entry on oeis.org

100, 301, 226, 305, 341, 770, 370, 876, 1232, 1800, 3451, 2044, 6816, 2666, 5876, 4459, 44982, 67082, 8350, 12840, 20724, 23571, 15840, 17100, 23001, 18190, 31093, 27756, 30176, 54245, 97019, 24708, 21582, 22584, 33429, 61201, 87814, 610305
Offset: 1

Views

Author

Manuel Valdivia, Apr 17 2008

Keywords

Comments

A045991(y)=A045991(z)-A045991(x), x=A138667(n) and z=A138669(n).

Crossrefs

A138669 Values of z in solutions (x,y,z) to the Diophantine equation x^3-x^2+y^3-y^2=z^3-z^2, with 1

Original entry on oeis.org

108, 304, 250, 356, 389, 785, 444, 901, 1298, 1864, 3480, 2159, 6828, 3029, 6149, 5439, 44994, 67094, 9259, 13305, 20934, 23895, 16854, 18660, 23936, 19653, 32034, 28996, 31940, 54974, 97259, 28164, 26742, 27984, 37958, 62880, 88704, 610326
Offset: 1

Views

Author

Manuel Valdivia, Apr 17 2008

Keywords

Comments

A045991(z)=A045991(x)+A045991(y), y=A138668(n) and x=A138667(n).

Crossrefs

A153258 n^3 - (n+2)^2.

Original entry on oeis.org

-4, -8, -8, 2, 28, 76, 152, 262, 412, 608, 856, 1162, 1532, 1972, 2488, 3086, 3772, 4552, 5432, 6418, 7516, 8732, 10072, 11542, 13148, 14896, 16792, 18842, 21052, 23428, 25976, 28702, 31612, 34712, 38008, 41506, 45212, 49132, 53272, 57638
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^3-(n+2)^2; lst={}; Do[AppendTo[lst, a[n]], {n, 0, 5!}]; lst

Formula

G.f.: 2*x*(x^3+4*x-2)/(x-1)^4. [Colin Barker, Oct 08 2012]

A153259 a(n)=n^3-(3*(n+3))^2.

Original entry on oeis.org

-81, -143, -217, -297, -377, -451, -513, -557, -577, -567, -521, -433, -297, -107, 143, 459, 847, 1313, 1863, 2503, 3239, 4077, 5023, 6083, 7263, 8569, 10007, 11583, 13303, 15173, 17199, 19387, 21743, 24273, 26983, 29879, 32967, 36253, 39743
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n^3-(3*(n+3))^2;lst={};Do[AppendTo[lst,a[n]],{n,0,5!}];lst
    Table[n^3-(3(n+3))^2,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{-81,-143,-217,-297},40] (* Harvey P. Dale, Jul 10 2013 *)
  • PARI
    a(n)=n^3-(3*n+9)^2 \\ Charles R Greathouse IV, Oct 18 2022

Formula

a(1)=-81, a(2)=-143, a(3)=-217, a(4)=-297, a(n)=4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 10 2013

A154731 Integers of the form k = m^3-m^2 such that k-+1 are primes.

Original entry on oeis.org

4, 18, 180, 2028, 8820, 34848, 108288, 191748, 720900, 875520, 960498, 990000, 1355310, 1629108, 1713600, 1756920, 2334948, 2609028, 7376850, 8448048, 21639798, 37148148, 42023088, 48893940, 60544008, 63840000, 100328400
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[k=n^3-n^2;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,p]],{n,7!}];lst

Formula

A045991 INTERSECT A014574. - R. J. Mathar, Jul 16 2022
Previous Showing 31-40 of 65 results. Next