A212971
Number of triples (w,x,y) with all terms in {0,...,n} and w < floor((x+y)/3).
Original entry on oeis.org
0, 0, 3, 11, 25, 48, 82, 128, 189, 267, 363, 480, 620, 784, 975, 1195, 1445, 1728, 2046, 2400, 2793, 3227, 3703, 4224, 4792, 5408, 6075, 6795, 7569, 8400, 9290, 10240, 11253, 12331, 13475, 14688, 15972, 17328, 18759, 20267, 21853, 23520
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w < Floor[(x + y)/3], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A212971*)
LinearRecurrence[{3,-3,2,-3,3,-1},{0,0,3,11,25,48},50] (* Harvey P. Dale, Aug 24 2021 *)
A304487
a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n) mod 2))/6.
Original entry on oeis.org
1, 4, 15, 36, 73, 128, 207, 312, 449, 620, 831, 1084, 1385, 1736, 2143, 2608, 3137, 3732, 4399, 5140, 5961, 6864, 7855, 8936, 10113, 11388, 12767, 14252, 15849, 17560, 19391, 21344, 23425, 25636, 27983, 30468, 33097, 35872, 38799, 41880, 45121, 48524, 52095
Offset: 1
For n = 1 the matrix A is
1
with trace Tr(A) = a(1) = 1.
For n = 2 the matrix A is
1, 2
4, 3
with Tr(A) = a(2) = 4.
For n = 3 the matrix A is
1, 2, 3
8, 9, 4
7, 6, 5
with Tr(A) = a(3) = 15.
For n = 4 the matrix A is
1, 2, 3, 4
12, 13, 14, 5
11, 16, 15, 6
10, 9, 8, 7
with Tr(A) = a(4) = 36.
Cf.
A126224 (determinant of the matrix A),
A317298 (first differences).
-
a_n:=List([1..43], n->(3 + 2*n - 3*n^2 + 4*n^3 - 3*RemInt(-1 + n, 2))/6);
-
List([1..43],n->(3+2*n-3*n^2+4*n^3-3*((-1+n) mod 2))/6); # Muniru A Asiru, Sep 17 2018
-
I:=[1,4,15,36,73]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..43]]; // Vincenzo Librandi, Aug 26 2018
-
seq((3+2*n-3*n^2+4*n^3-3*modp((-1+n),2))/6,n=1..43); # Muniru A Asiru, Sep 17 2018
-
Table[1/6 (3 + 2 n - 3 n^2 + 4 n^3 - 3 Mod[-1 + n, 2]), {n, 1, 43}] (* or *)
CoefficientList[ Series[x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)), {x, 0, 43}], x] (* or *)
LinearRecurrence[{3, -2, -2, 3, -1}, {1, 4, 15, 36, 73}, 43]
-
a(n):=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6$ makelist(a(n), n, 1, 43);
-
Vec(x*(1 + x + 5*x^2 + x^3)/((-1 + x)^4*(1 + x)) + O(x^44))
-
a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n)%2))/6
A132998
a(n) = n^4 - n^3 - n^2.
Original entry on oeis.org
0, -1, 4, 45, 176, 475, 1044, 2009, 3520, 5751, 8900, 13189, 18864, 26195, 35476, 47025, 61184, 78319, 98820, 123101, 151600, 184779, 223124, 267145, 317376, 374375, 438724, 511029, 591920, 682051, 782100, 892769
Offset: 0
a(7)=2009 because 7^4=2401, 7^3=343, 7^2=49 and we can write 2401-343-49=2009.
-
[n^4-n^3-n^2: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
-
A132998:=n->n^4-n^3-n^2; seq(A132998(n), n=0..50); # Wesley Ivan Hurt, May 21 2014
-
f[n_]:=n^4-n^3-n^2; Table[f[n],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Dec 04 2009 *)
CoefficientList[Series[- x (-1 + 9 x + 15 x^2 + x^3)/(-1 + x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 21 2014 *)
LinearRecurrence[{5,-10,10,-5,1}, {0, -1, 4, 45, 176}, 50] (* G. C. Greubel, Sep 28 2017 *)
-
x='x+O('x^50); Vec(x*(-1+9*x+15*x^2+x^3)/(1-x)^5) \\ G. C. Greubel, Sep 28 2017
A134631
a(n) = 5*n^5 - 3*n^3 + 2*n^2. Coefficients and exponents are the prime numbers in decreasing order.
Original entry on oeis.org
0, 4, 144, 1152, 4960, 15300, 38304, 83104, 162432, 293220, 497200, 801504, 1239264, 1850212, 2681280, 3787200, 5231104, 7085124, 9430992, 12360640, 15976800, 20393604, 25737184, 32146272, 39772800, 48782500, 59355504, 71686944, 85987552, 102484260, 121420800, 143058304, 167675904, 195571332, 227061520
Offset: 0
a(4)=4960 because 4^5=1024, 5*1024=5120, 4^3=64, 3*64=192, 4^2=16, 2*16=32 and we can write 5120 - 192 + 32 = 4960.
-
[5*n^5-3*n^3+2*n^2: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
-
Table[5n^5-3n^3+2n^2,{n,0,40}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,4,144,1152,4960,15300},40] (* Harvey P. Dale, Jan 20 2023 *)
A138667
Values of x in solutions (x,y,z) to the Diophantine equation x^3-x^2+y^3-y^2=z^3-z^2, with 1
Original entry on oeis.org
64, 94, 160, 256, 268, 301, 333, 390, 682, 864, 1015, 1151, 1188, 2068, 3094, 4165, 4177, 5452, 5959, 6201, 6490, 8181, 9334, 11440, 11561, 11628, 14116, 14416, 17220, 18684, 18940, 19360, 20856, 21825, 25880, 26865, 27501, 28630, 28850, 28858
Offset: 1
Solutions to the Diophantine equation in lexicographic order: {x, y, z}: {64, 100, 108}, {94, 301, 304}, {160, 226, 250}, {256, 305, 356}, {268, 341, 389}, {301, 770, 785}, {333, 370, 444}, {390, 876, 901},...
A138668
Values of y in solutions (x,y,z) to the Diophantine equation x^3-x^2+y^3-y^2=z^3-z^2, with 1
Original entry on oeis.org
100, 301, 226, 305, 341, 770, 370, 876, 1232, 1800, 3451, 2044, 6816, 2666, 5876, 4459, 44982, 67082, 8350, 12840, 20724, 23571, 15840, 17100, 23001, 18190, 31093, 27756, 30176, 54245, 97019, 24708, 21582, 22584, 33429, 61201, 87814, 610305
Offset: 1
A138669
Values of z in solutions (x,y,z) to the Diophantine equation x^3-x^2+y^3-y^2=z^3-z^2, with 1
Original entry on oeis.org
108, 304, 250, 356, 389, 785, 444, 901, 1298, 1864, 3480, 2159, 6828, 3029, 6149, 5439, 44994, 67094, 9259, 13305, 20934, 23895, 16854, 18660, 23936, 19653, 32034, 28996, 31940, 54974, 97259, 28164, 26742, 27984, 37958, 62880, 88704, 610326
Offset: 1
A153258
n^3 - (n+2)^2.
Original entry on oeis.org
-4, -8, -8, 2, 28, 76, 152, 262, 412, 608, 856, 1162, 1532, 1972, 2488, 3086, 3772, 4552, 5432, 6418, 7516, 8732, 10072, 11542, 13148, 14896, 16792, 18842, 21052, 23428, 25976, 28702, 31612, 34712, 38008, 41506, 45212, 49132, 53272, 57638
Offset: 1
-
a[n_] := n^3-(n+2)^2; lst={}; Do[AppendTo[lst, a[n]], {n, 0, 5!}]; lst
A153259
a(n)=n^3-(3*(n+3))^2.
Original entry on oeis.org
-81, -143, -217, -297, -377, -451, -513, -557, -577, -567, -521, -433, -297, -107, 143, 459, 847, 1313, 1863, 2503, 3239, 4077, 5023, 6083, 7263, 8569, 10007, 11583, 13303, 15173, 17199, 19387, 21743, 24273, 26983, 29879, 32967, 36253, 39743
Offset: 1
-
a[n_]:=n^3-(3*(n+3))^2;lst={};Do[AppendTo[lst,a[n]],{n,0,5!}];lst
Table[n^3-(3(n+3))^2,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{-81,-143,-217,-297},40] (* Harvey P. Dale, Jul 10 2013 *)
-
a(n)=n^3-(3*n+9)^2 \\ Charles R Greathouse IV, Oct 18 2022
A154731
Integers of the form k = m^3-m^2 such that k-+1 are primes.
Original entry on oeis.org
4, 18, 180, 2028, 8820, 34848, 108288, 191748, 720900, 875520, 960498, 990000, 1355310, 1629108, 1713600, 1756920, 2334948, 2609028, 7376850, 8448048, 21639798, 37148148, 42023088, 48893940, 60544008, 63840000, 100328400
Offset: 1
-
lst={};Do[k=n^3-n^2;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,p]],{n,7!}];lst
Comments