cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A110893 Numbers with a semiprime number of prime divisors (counted with multiplicity).

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 64, 81, 84, 88, 90, 96, 100, 104, 126, 132, 135, 136, 140, 144, 150, 152, 156, 160, 184, 189, 196, 198, 204, 210, 216, 220, 224, 225, 228, 232, 234, 240, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 324, 328, 330, 336, 340, 342
Offset: 1

Views

Author

Jonathan Vos Post, Sep 20 2005

Keywords

Comments

Below 256 = 2^8 this is identical to A067028 (Numbers with a composite number of prime factors, counted with multiplicity).

Crossrefs

Programs

Formula

a(n) such that A001222(a(n)) is an element of A001358. a(n) such that bigomega(a(n)) is an element of A001358. Union[4-almost primes(A014613), 6-almost primes(A046306), 9-almost primes(A046312), 10-almost primes(A046314), 14-almost primes(A069275), 15-almost primes(A069276), 21-almost primes, 22-almost primes, 25-almost primes, 26-almost primes, ...]

A349029 Lucas-Carmichael numbers with 10 prime factors.

Original entry on oeis.org

989565001538399, 1250312791224959, 1419432982021439, 1518134614712639, 2240225337903839, 2493922560242399, 2708548708646879, 2786001880066559, 2807577905060159, 2808521396058455, 3157015238986895, 3210972445532159, 3221015190555239, 3407706183722399, 3614740529402519
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Nov 06 2021

Keywords

Examples

			989565001538399 = 11*13*17*19*29*31*41*47*83*149 and 12, 14, 18, 20, 30, 32, 42, 48, 84, and 150 all divide 989565001538400.
		

Crossrefs

Intersection of A006972 and A046314.
Cf. A216928 (least Lucas-Carmichael number with n prime factors).
Cf. A216925, A216926, A216927, A217002, A217003, A217091, A349028, A349030 (Lucas-Carmichael numbers with 3-9 and 11 prime factors).

Programs

  • PARI
    is(n)={omega(n)==10&&is_A006972(n)}

A046313 Numbers that are divisible by at least 10 primes (counted with multiplicity).

Original entry on oeis.org

1024, 1536, 2048, 2304, 2560, 3072, 3456, 3584, 3840, 4096, 4608, 5120, 5184, 5376, 5632, 5760, 6144, 6400, 6656, 6912, 7168, 7680, 7776, 8064, 8192, 8448, 8640, 8704, 8960, 9216, 9600, 9728, 9984, 10240, 10368, 10752, 11264, 11520, 11664, 11776
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Subsequence of A033987, A046304, A046305, A046307, A046309, and A046311.
Cf. A046314.

Programs

  • Mathematica
    Select[Range[12000],PrimeOmega[#]>9&] (* Harvey P. Dale, Dec 17 2018 *)
  • PARI
    is(n)=bigomega(n)>9 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046313(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,10)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i >= 10.
a(n) = n + O(n (log log n)^8/log n). - Charles R Greathouse IV, Apr 07 2017

A046323 Odd numbers divisible by exactly 10 primes (counted with multiplicity).

Original entry on oeis.org

59049, 98415, 137781, 164025, 216513, 229635, 255879, 273375, 321489, 334611, 360855, 373977, 382725, 426465, 452709, 455625, 505197, 535815, 557685, 570807, 597051, 601425, 610173, 623295, 637875, 710775, 728271, 750141, 754515, 759375
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A046314.

Programs

  • Mathematica
    Select[Range[9,800001,2],PrimeOmega[#]==10&] (* Harvey P. Dale, May 26 2013 *)
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046323(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,10)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024

A101696 a(n) = sum(i=1,n)(i-th i-almost prime). Cumulative sums of A101695.

Original entry on oeis.org

2, 8, 26, 66, 174, 398, 878, 2174, 4862, 10494, 22014, 45054, 98302, 222718, 480766, 1021438, 2127358, 4355582, 8943102, 18773502, 38696446, 79590910, 175142398, 368080382, 764442110, 1586525694, 3247470078, 6644856318, 13489960446
Offset: 1

Views

Author

Jonathan Vos Post, Dec 12 2004, Sep 28 2006

Keywords

Comments

It seems that this sum can never be a prime after a(1) = 2, since the n-th n-almost prime is always even. The number of prime factors (with multiplicity) of a(n) is 1, 3, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 3, 3, 5, 4, 3, 4, 7, 4, 2, 5, 5, 2, 3, 7, 4, 3, 4.
This is the diagonalization of the set of sequences {j-almost prime(k)}. The cumulative sums of this sequence are in A101696. a(1)=2 is prime. a(2)=8 is a 3-almost prime. a(3)=26 is a semiprime. a(4)=66 is a 3-almost prime. a(5)= 174 is a 3-almost prime. a(6)=398 is a semiprime. a(7)=878 is a semiprime. a(8)=2174 is a semiprime. a(9)=4862 is a 4-almost prime. a(10)=10494 is a 5-almost prime. a(11)=22014 is a 4-almost prime. a(12)=45054 is a 3-almost prime. a(13)=98302 is a 3-almost prime. a(14)=222718 is a 3-almost prime. a(15)=480766 is a 5-almost prime. a(16)=1021438 is a 4-almost prime. a(17)=2127358 is a 3-almost prime. a(18)=4355582 is a 4-almost prime. a(19)=8943102 is a 7-almost prime. a(20)=18773502 is a 4-almost prime. 21-almost numbers are not yet listed in the OEIS.

Examples

			a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2 + 2nd 2-almost prime = 2 + A001358(2) = 2+ 6 = 8.
a(3) = a(2) + 3rd 3-almost prime = 8+A014612(3) = 8+18 = 26.
a(4) = a(3) + 4th 4-almost prime = 26+A014613(4) = 26+40 = 66.
a(5) = a(4) + 5th 5-almost prime = 66+A014614(5) = 66+108=174.
...
a(12) = a(11) + 12th 12-almost prime = 22014 + 23040 = 45054 (the first nontrivial palindrome in the sequence).
		

Crossrefs

Formula

a(1) = first 1-almost prime = first prime = A000040(1). a(2) = a(1) + 2nd 2-almost prime = a(1) + 2nd semiprime = A000040(1)+A001358(2). a(3) = a(2) + 3rd 3-almost prime = a(2) + A014612(3). a(4) = a(3) + 4th 4-almost prime = a(3) + A014613(4)... a(n) = a(n-1) + n-th n-almost prime.

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A101744 Triangular numbers which are 10-almost primes.

Original entry on oeis.org

32640, 73920, 130816, 165600, 204480, 265356, 294528, 401856, 592416, 839160, 947376, 990528, 1279200, 1445850, 1492128, 1606528, 1842240, 1844160, 2031120, 2049300, 2821500, 2956096, 3571128, 3963520, 4148640, 4250070, 4335040
Offset: 1

Views

Author

Jonathan Vos Post, Dec 14 2004

Keywords

Comments

A101745 contains the indices of this sequence, i.e. T(n) for what values of n are these 10-almost primes.

Examples

			a(1) = 32640 because that is the smallest triangular number which is also a 10-almost prime; specifically T(255) = 255*(255+1)/2 = 32640 = 2^7 * 3 * 5 * 17.
		

References

  • Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987.
  • Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 33-38, 1996.
  • Dudeney, H. E. Amusements in Mathematics. New York: Dover, pp. 67 and 167, 1970.

Crossrefs

Programs

  • Mathematica
    BigOmega[n_Integer]:=Plus@@Last[Transpose[FactorInteger[n]]]; Select[Table[n*(n+1)/2, {n, 2, 5000}], BigOmega[ # ]==10&] (* Ray Chandler, Dec 14 2004 *)
  • PARI
    list(lim)=my(v=List(),cur,last=3,n=256,t); while((t=n*(n-1)/2) <= lim, cur=bigomega(n); if(cur+old==11, listput(v,t)); old=cur; n++); Vec(v) \\ Charles R Greathouse IV, Feb 05 2017

Formula

a(n) is in the intersection of {A000217} and {A046314}. Integers of the form k*(k+1)/2 which have exactly 10 prime factors.

Extensions

More terms from Ray Chandler, Dec 14 2004

A337112 Smallest term of A337081 that has exactly n prime factors, or 0 if no such term exists.

Original entry on oeis.org

0, 4, 0, 90, 675, 1134, 6318, 4374, 32805, 255879, 1003833, 531441, 327544803, 20751953125, 225830078125, 91552734375, 1068115234375, 23651123046875, 316619873046875, 1697540283203125, 13256072998046875, 85353851318359375, 541210174560546875, 4518032073974609375, 58233737945556640625
Offset: 1

Views

Author

Matej Veselovac, Aug 16 2020

Keywords

Comments

a(n) is the smallest product of n primes that has unordered factorizations whose sums of factors are the same (is a term of A337080) and all of whose proper divisors have the complementary property: that every unordered factorization has a distinct sum of factors (i.e., all proper divisors are terms of A337037).

Crossrefs

Cf. A337113 (factors of terms).
Cf. A056472 (all factorizations of n).
Cf. r-almost primes: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).

Extensions

a(14) onward from David A. Corneth, Aug 26 2020

A338442 Carmichael numbers with 10 prime factors.

Original entry on oeis.org

1436697831295441, 1493812621027441, 2094319836529921, 2349991949342401, 2842648863161185, 2859959706040801, 3455134500424321, 3871703982953521, 4177950872896801, 4289150794129201, 4937378437571041, 5071419883911745, 5778659093725441, 6665161459969441, 6682056104892961
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Oct 28 2020

Keywords

Examples

			1436697831295441 = 11*13*19*29*31*37*41*43*71*127 and 10, 12, 18, 28, 30, 36, 40, 42, 70, 126 all divide 1436697831295440.
		

Crossrefs

Cf. A002997 (Carmichael numbers).
Cf. A006931 (Least Carmichael number with n prime factors).
Cf. A299710 (Number of terms less than 10^n).
Cf. A087788, A074379, A112428, A112429, A112430, A112431, A112432, A338443 (Carmichael numbers with 3-9 and 11 prime factors).

Programs

  • PARI
    is(n)={omega(n)==10&&is_A002997(n)}

Formula

Equals A002997 intersect A046314.

A369897 Numbers k such that k and k + 1 each have 10 prime divisors, counted with multiplicity.

Original entry on oeis.org

3290624, 4122495, 4402431, 5675264, 6608384, 6890624, 7914752, 8614592, 9454400, 11553920, 12613887, 13466816, 14493248, 14853375, 15473024, 16719615, 17494784, 18272384, 18309375, 22784895, 24890624, 25200800, 25869375, 25957503, 26903744, 26921727, 27510272, 28350080, 29761424, 31802624
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Feb 04 2024

Keywords

Comments

Numbers k such that k and k + 1 are in A046314.
If a and b are coprime terms of A046312, one of them even, then Dickson's conjecture implies there are infinitely many terms k where k/a and (k+1)/b are primes.

Examples

			a(5) = 6608384 is a term because 6608384 = 2^9 * 12907 and 6608385 = 3^6 * 5 * 7^2 * 37 each have 10 prime divisors, counted with multiplicity.
		

Crossrefs

Programs

  • Maple
    with(priqueue):
    R:= NULL:  count:= 0:
    initialize(Q); r:= 0:
    insert([-2^10, [2$10]],Q);
    while count < 30 do
      T:= extract(Q);
      if -T[1] = r + 1 then
        R:= R, r; count:= count+1;
      fi;
      r:= -T[1];
      p:= T[2][-1];
      q:= nextprime(p);
      for i from 10 to 1 by -1 while T[2][i] = p do
        insert([-r*(q/p)^(11-i), [op(T[2][1..i-1]),q$(11-i)]],Q);
      od
    od:
    R;

A247114 Primes sandwiched between 4-almost primes (A014613).

Original entry on oeis.org

89, 151, 197, 233, 307, 349, 461, 491, 569, 571, 739, 857, 859, 1013, 1061, 1097, 1277, 1291, 1303, 1483, 1667, 1747, 1831, 1913, 1973, 2003, 2131, 2357, 2503, 2531, 2621, 2683, 3011, 3067, 3163, 3209, 3229, 3259, 3271, 3581, 3797, 3929, 4013, 4027, 4073, 4219, 4327, 4597, 4793, 4877, 4903
Offset: 1

Views

Author

Zak Seidov, Jan 10 2015

Keywords

Comments

Primes p such that p - 1 and p + 1 are 4-almost primes.

Examples

			89 - 1 = 2^3*11, 89 + 1 = 2*3^2*5.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], 4 == PrimeOmega[# - 1] == PrimeOmega[# + 1] &]
  • PARI
    forprime(p= 1,5000, if(4==bigomega(p-1)&&4==bigomega(p+1), print1(p", ")))
    
  • PARI
    is(n)=bigomega(n-1)==4 && bigomega(n+1)==4 && isprime(n) \\ Charles R Greathouse IV, Apr 27 2015
Previous Showing 31-40 of 46 results. Next