cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A338469 Products of three odd prime numbers of odd index.

Original entry on oeis.org

125, 275, 425, 575, 605, 775, 935, 1025, 1175, 1265, 1331, 1445, 1475, 1675, 1705, 1825, 1955, 2057, 2075, 2255, 2425, 2575, 2585, 2635, 2645, 2725, 2783, 3175, 3179, 3245, 3425, 3485, 3565, 3685, 3725, 3751, 3925, 3995, 4015, 4175, 4301, 4475, 4565, 4715
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

Also Heinz numbers of integer partitions with 3 parts, all of which are odd and > 1. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
     125: {3,3,3}     1825: {3,3,21}    3425: {3,3,33}
     275: {3,3,5}     1955: {3,7,9}     3485: {3,7,13}
     425: {3,3,7}     2057: {5,5,7}     3565: {3,9,11}
     575: {3,3,9}     2075: {3,3,23}    3685: {3,5,19}
     605: {3,5,5}     2255: {3,5,13}    3725: {3,3,35}
     775: {3,3,11}    2425: {3,3,25}    3751: {5,5,11}
     935: {3,5,7}     2575: {3,3,27}    3925: {3,3,37}
    1025: {3,3,13}    2585: {3,5,15}    3995: {3,7,15}
    1175: {3,3,15}    2635: {3,7,11}    4015: {3,5,21}
    1265: {3,5,9}     2645: {3,9,9}     4175: {3,3,39}
    1331: {5,5,5}     2725: {3,3,29}    4301: {5,7,9}
    1445: {3,7,7}     2783: {5,5,9}     4475: {3,3,41}
    1475: {3,3,17}    3175: {3,3,31}    4565: {3,5,23}
    1675: {3,3,19}    3179: {5,7,7}     4715: {3,9,13}
    1705: {3,5,11}    3245: {3,5,17}    4775: {3,3,43}
		

Crossrefs

A046316 allows all primes (strict: A046389).
A338471 allows all odd primes (strict: A307534).
A338556 is the version for evens (strict: A338557).
A000009 counts partitions into odd parts (strict: A000700).
A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
A005408 lists odds (strict: A056911).
A008284 counts partitions by sum and length.
A014311 is a ranking of 3-part compositions (strict: A337453).
A014612 lists Heinz numbers of 3-part partitions (strict: A007304).
A023023 counts 3-part relatively prime partitions (strict: A101271).
A066207 lists numbers with all even prime indices (strict: A258117).
A066208 lists numbers with all odd prime indices (strict: A258116).
A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
A285508 lists Heinz numbers of non-strict 3-part partitions.

Programs

  • Maple
    N:= 10000: # for terms <= N
    P0:= [seq(ithprime(i),i=3..numtheory:-pi(floor(N/25)),2)]:
    sort(select(`<=`,[seq(seq(seq(P0[i]*P0[j]*P0[k],k=1..j),j=1..i),i=1..nops(P0))], N)); # Robert Israel, Nov 12 2020
  • Mathematica
    Select[Range[1,1000,2],PrimeOmega[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • PARI
    isok(m) = my(f=factor(m)); (m%2) && (bigomega(f)==3) && (#select(x->!(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A338469(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1)+1 for a,k in filter(lambda x:x[0]&1,enumerate(primerange(5,integer_nthroot(x,3)[0]+1),3)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A075808 Palindromic odd composite numbers that are the products of an odd number of distinct primes.

Original entry on oeis.org

555, 595, 777, 969, 1001, 1221, 1551, 1771, 3333, 3553, 5335, 5555, 5665, 5885, 5995, 7337, 7557, 7667, 7777, 7887, 9339, 9669, 9779, 9889, 11211, 11811, 12121, 12621, 12921, 13731, 14241, 14541, 15051, 15951, 16261, 16761, 17171, 18381
Offset: 1

Views

Author

Jani Melik, Oct 13 2002

Keywords

Examples

			555 = 3*5*37, 595 = 5*7*17 and 777 = 3*7*37 are palindromic, odd, composite and products of an odd number of distinct primes.
50505 = 3 * 5 * 7 * 13 * 37 is the first term with five factors.
125 = 5^3 and 5445 = 3^2 * 5 * 11^2 are not terms since they are not the products of distinct primes.
		

Crossrefs

Programs

  • Maple
    test := proc(n) local d; d := convert(n,base,10); return ListTools[Reverse](d)=d and numtheory[mobius](n)=-1 and not isprime(n); end; a := []; for n from 1 to 30000 by 2 do if test(n) then a := [op(a),n]; end; od; a;
  • Mathematica
    Select[Range[2,20000], ! PrimeQ[#] && OddQ[#] && PalindromeQ[#] &&
       OddQ[Length[Transpose[FactorInteger[#]][[2]]]] &&
    Max[Transpose[FactorInteger[#]][[2]]] == 1 &] (* Tanya Khovanova, Aug 26 2022 *)
  • Python
    from sympy import isprime, factorint
    from itertools import count, islice, product
    def cond(n):
        if n%2 == 0 or isprime(n): return False
        f = factorint(n)
        return len(f) == sum(f.values()) and len(f)&1
    def oddpals(): # generator of odd palindromes
        yield from [1, 3, 5, 7, 9]
        for d in count(2):
            for first in "13579":
                for p in product("0123456789", repeat=(d-2)//2):
                    left = "".join(p); right = left[::-1]
                    for mid in [[""], "0123456789"][d%2]:
                        yield int(first + left + mid + right + first)
    def agen(): yield from filter(cond, oddpals())
    print(list(islice(agen(), 38))) # Michael S. Branicky, Aug 25 2022

Extensions

Edited by Dean Hickerson, Oct 21 2002
Name edited by Tanya Khovanova, Aug 26 2022

A180257 a(n) = 2^(p*r) mod q for the n-th odd number with exactly three distinct prime factors p < q < r.

Original entry on oeis.org

2, 2, 3, 1, 3, 1, 2, 2, 1, 2, 1, 6, 3, 4, 2, 1, 3, 2, 2, 1, 3, 7, 2, 1, 8, 4, 2, 10, 5, 6, 1, 3, 2, 1, 2, 5, 1, 3, 10, 7, 2, 1, 2, 2, 2, 8, 10, 2, 4, 3, 2, 1, 8, 15, 2, 5, 2, 7, 1, 2, 10, 1, 4, 6, 12, 3, 8, 1, 6, 2, 8, 3, 8, 9, 1, 11, 4, 3, 1, 2, 7, 2, 15, 10, 8
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 17 2011

Keywords

Examples

			a(1) = 2^(3*7) mod 5 = 2 because A046389(1) = 105 = 3*5*7.
		

Crossrefs

Extensions

More terms and corrected a(10) and a(13) from Nathaniel Johnston, Jan 18 2011

A378209 Antiderivatives of 334406399, numbers k for which A003415(k) = A024451(9) = A003415(A002110(9)).

Original entry on oeis.org

223092870, 975351895, 1527890095, 1885679383, 2189118743, 2329696457, 2338611863, 3485765789, 4586671213, 5453593183, 5472849253, 5674340053, 8071055747, 8931775397, 9332889127, 9453996491, 9601098443, 10293819917, 12717530039, 17343441881, 18636581773, 19498393573, 20167656703, 23244839627, 23515890737, 23556538969
Offset: 1

Views

Author

Antti Karttunen, Nov 20 2024

Keywords

Comments

Apart from the initial term A002110(9), all other terms are products of three distinct odd primes, A046389. Compare to the comments in A369239.
Note that A024451(9) = 334406399 = 43 * 163 * 47711 == -1 (mod 12). Compare the sequences A369450, A369451 and A369452 to see why there is such a sudden peak in A377993 at n=9, when compared to the nearby terms before and after.
For all n=1..330, A327969(a(n)) <= 7 = A099307(a(n)), because, when we apply A003415 successively, we get: A003415(334406399) -> 9835475 [= A369651(9)] -> 4893565 -> 978718 -> 564671 (which is a prime) -> 1 -> 0.

Crossrefs

Row 9 of irregular triangle A377992.
Subsequence of A099308, and after the initial term, subsequence of A046389.

A075815 Palindromic odd composite numbers with an odd number of prime factors (counted with multiplicity).

Original entry on oeis.org

99, 171, 333, 343, 363, 555, 575, 595, 747, 777, 909, 969, 1001, 1221, 1331, 1551, 1771, 3333, 3553, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 7337, 7557, 7667, 7777, 7887, 9009, 9339, 9559, 9669, 9779, 9889, 11211, 11511, 11711, 11811, 12121
Offset: 1

Views

Author

Jani Melik, Oct 13 2002

Keywords

Examples

			5445=3^2*5*11^2 and 5555=5*11*101 are palindromic, odd, composite and have an odd number of prime factors.
		

Crossrefs

Cf. A046389.

Programs

  • Maple
    test := proc(n) local d; d := convert(n,base,10); return ListTools[Reverse](d)=d and type(numtheory[bigomega](n),odd) and not isprime(n); end; a := []; for n from 1 to 13000 by 2 do if test(n) then a := [op(a),n]; end; od; a;
  • Mathematica
    Select[Range[9,13000,2],PalindromeQ[#]&&CompositeQ[#]&&OddQ[ PrimeOmega[ #]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 28 2021 *)

Extensions

Edited by Dean Hickerson, Oct 21 2002

A146961 Numbers k = p*q*r, with odd primes p < q < r, such that Sister Beiter's cyclotomic coefficient conjecture is false.

Original entry on oeis.org

20213, 125609, 136477, 141317, 150271, 198493, 199177, 212971, 239039, 273229, 282367, 291343, 311201, 332777, 373901, 393313, 398563, 412357, 442091, 449527, 449647, 450131, 456569, 461263, 469249, 470741, 475057, 522461, 524837, 532363
Offset: 1

Views

Author

T. D. Noe, Nov 03 2008

Keywords

Comments

In 1968, Sister Beiter conjectured that for k = p*q*r, with odd primes p < q < r, the maximum coefficient (in absolute value) of the cyclotomic polynomial Phi(k,x) is <= (p+1)/2. Up to 10^6, all counterexamples have p > 7. Gallot and Moree prove the conjecture is false for p > 7.

Crossrefs

Subsequence of A046389.

Programs

  • PARI
    isok(m) = if ((m%2) && (bigomega(m)==3) && (omega(m)==3), my(p=vecmin(factor(m)[,1])); vecmax(apply(abs, Vec(polcyclo(m)))) > (p+1)/2;); \\ Michel Marcus, Jan 16 2023
    
  • Sage
    from sage.rings.polynomial.cyclotomic import cyclotomic_coeffs
    for n in range(3, 100000, 2):
        pqr = Integer(n).prime_factors()
        if (len(pqr) == 3) and (product(pqr) == n):
            coeffs = cyclotomic_coeffs(n, sparse=False)
            max_coeff = max(abs(c) for c in coeffs)
            if (max_coeff > (pqr[0]+1)//2): print(n)  # Robin Visser, Aug 17 2023

A180258 a(n) = 2^(q*r) mod p for the n-th odd number with exactly 3 distinct prime factors p < q < r.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 17 2011

Keywords

Examples

			a(1) = 2^(5*7) mod 3 = 2, because A046389(1) = 105 = 3*5*7 and 3 < 5 < 7.
		

Crossrefs

Extensions

More terms and corrected a(28) from Nathaniel Johnston, Jan 18 2011

A361075 Products of exactly 7 distinct odd primes.

Original entry on oeis.org

4849845, 5870865, 6561555, 7402395, 7912905, 8273265, 8580495, 8843835, 9444435, 10015005, 10140585, 10465455, 10555545, 10705695, 10818885, 10975965, 11565015, 11696685, 11996985, 12267255, 12777765, 12785955, 13096545, 13408395, 13498485, 13528515, 13667745, 13803405
Offset: 1

Views

Author

Karl-Heinz Hofmann, Mar 01 2023

Keywords

Examples

			a(1)     =   4849845 = 3*5*7*11*13*17*19
a(9663)  = 253808555 = 5*7*11*13*17*19*157
a(9961)  = 258573315 = 3*5*7*11*13*17*1013
a(10000) = 259173915 = 3*5*7*11*13*41*421
		

Crossrefs

Cf. A065091, A046388 (2 distinct odd primes).
Cf. A046389 (3 distinct odd primes), A046390 (4 distinct odd primes).
Cf. A046391 (5 distinct odd primes), A168352 (6 distinct odd primes).

Programs

  • Python
    import numpy
    from sympy import nextprime, sieve, primepi
    k_upto = 14 * 10**6
    array = numpy.zeros(k_upto,dtype="i4")
    sieve_max_number = primepi(nextprime(k_upto // 255255))
    for s in range(2,sieve_max_number):
        array[sieve[s]:k_upto][::sieve[s]] += 1
    for s in range(2,sieve_max_number):
        array[sieve[s]**2:k_upto][::sieve[s]**2] = 0
    print([k for k in range(1,k_upto,2) if array[k] == 7])
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A361075(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,7)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

A379762 Products of 4 distinct prime numbers (or tetraprimes) that are abundant.

Original entry on oeis.org

210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 930, 966, 1110, 1122, 1190, 1218, 1230, 1254, 1290, 1302, 1326, 1330, 1410, 1430, 1482, 1518, 1554, 1590, 1610, 1722, 1770, 1794, 1806, 1830, 1870, 1914, 1938, 1974, 2002, 2010, 2030, 2046, 2090, 2130, 2170, 2190, 2210, 2226, 2262, 2346, 2370, 2418, 2442, 2470, 2478, 2490, 2530, 2562, 2590, 2622
Offset: 1

Views

Author

Massimo Kofler, Jan 09 2025

Keywords

Comments

This sequence is not 2*{A046389}. 2618 = 2*1309 is not in this sequence, while 1309 is in A046389.
Contains 6*p*q if p and q are distinct primes > 3. The first term not of this form is 770. - Robert Israel, Jan 09 2025
a(43) = 2002 is the only term coprime to 15. - Charles R Greathouse IV, Jan 13 2025

Examples

			210 is a term because 210=2*3*5*7 is the product of four distinct primes and it is smaller than the sum of its proper divisors 366.
1155 is not a term because 1155=3*5*7*11 is the product of four distinct primes and it is larger than the sum of its proper divisors 1149.
		

Crossrefs

Intersection of A005101 and A046386.

Programs

  • Maple
    filter:= proc(n) local F,t;
       F:= ifactors(n)[2];
       F[..,2] = [1,1,1,1] and mul(t[1]+1, t = F) > 2*n
    end proc:
    select(filter, [seq(i,i=2..3000, 4)]); # Robert Israel, Jan 09 2025
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1, 1} && Times @@ (1 + 1/f[[;; , 1]]) > 2]; Select[Range[3000], q] (* Amiram Eldar, Jan 09 2025 *)
  • PARI
    list(lim)=my(v=List(select(k->k<=lim, [1430, 1870, 2002, 2090, 2210, 2470, 2530, 2990, 3190, 3230, 3410, 3770, 4030, 4070, 4510, 4730, 5170, 5830]))); forprime(p=5,sqrtint(lim\6), my(t=6*p); forprime(q=p+2,lim\t, listput(v,t*q))); forprime(p=11,lim\70,listput(v,70*p)); Set(v) \\ Charles R Greathouse IV, Jan 13 2025

Formula

a(n) == 2 (mod 4).
a(n) ~ (1/6)*n log n/log log n. - Charles R Greathouse IV, Jan 13 2025
Previous Showing 21-29 of 29 results.