cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 55 results. Next

A317845 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A001065 (sum of proper divisors) + A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 1, 1, 11, 1, 11, 1, 45, 15, 15, 1, 95, 1, 19, 17, 659, 1, 131, 1, 135, 21, 27, 1, 315, 23, 31, 89, 175, 1, 125, 1, 2319, 29, 39, 25, 901, 1, 43, 33, 455, 1, 165, 1, 255, 215, 51, 1, 3739, 31, 291, 41, 295, 1, 671, 33, 595, 45, 63, 1, 731, 1, 67, 271, 16319, 37, 245, 1, 375, 53, 237, 1, 2135, 1, 79, 335, 415, 37, 285, 1, 5419, 1979, 87, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

The first negative term is a(360) = -12947.

Crossrefs

Cf. A001065, A063524, A046644 (denominators).
Cf. also A317831, A317846.

Programs

  • PARI
    A317845aux(n) = if(1==n,n,((sigma(n)-n)-sumdiv(n,d,if((d>1)&&(dA317845aux(d)*A317845aux(n/d),0)))/2);
    A317845(n) = numerator(A317845aux(n));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001065(n) - Sum_{d|n, d>1, d 1.

A317926 Denominators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).

Original entry on oeis.org

1, 2, 1, 8, 1, 2, 1, 16, 2, 1, 1, 8, 1, 2, 1, 128, 1, 4, 1, 4, 1, 2, 1, 16, 1, 1, 2, 8, 1, 1, 1, 256, 1, 1, 1, 16, 1, 2, 1, 8, 1, 2, 1, 8, 1, 2, 1, 128, 2, 1, 1, 4, 1, 4, 1, 16, 1, 1, 1, 4, 1, 2, 2, 1024, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 8, 1, 1, 1, 64, 8, 1, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 4, 2, 1, 1, 1, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Crossrefs

Cf. A000010, A317925 (numerators).
Cf. also A046644, A317832.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = (EulerPhi[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; Denominator @ Array[f, 100] (* Amiram Eldar, Dec 12 2022 *)
  • PARI
    A317925perA317926(n) = if(1==n,n,(eulerphi(n)-sumdiv(n,d,if((d>1)&&(dA317925perA317926(d)*A317925perA317926(n/d),0)))/2);
    A317926(n) = denominator(A317925perA317926(n));
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, ((1-X)/(1-p*X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A000010(n) - Sum_{d|n, d>1, d 1.

A318321 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A003961.

Original entry on oeis.org

1, 3, 5, 27, 7, 15, 11, 135, 75, 21, 13, 135, 17, 33, 35, 2835, 19, 225, 23, 189, 55, 39, 29, 675, 147, 51, 625, 297, 31, 105, 37, 15309, 65, 57, 77, 2025, 41, 69, 85, 945, 43, 165, 47, 351, 525, 87, 53, 14175, 363, 441, 95, 459, 59, 1875, 91, 1485, 115, 93, 61, 945, 67, 111, 825, 168399, 119, 195, 71, 513, 145, 231, 73
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Comments

Multiplicative because A003961 is.

Crossrefs

Cf. A003961, A046644 (denominators).
Cf. also A318319.

Programs

  • PARI
    up_to = 16384;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318321aux = DirSqrt(vector(up_to, n, A003961(n)));
    A318321(n) = numerator(v318321aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A003961(n) - Sum_{d|n, d>1, d 1.

A318662 Denominators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 8, 2, 2, 2, 2, 2, 4, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 16, 2, 2, 4, 2, 2, 4, 2, 4, 8, 2, 2, 4, 4, 2, 4, 2, 2, 16, 2, 2, 4, 8, 8, 4, 2, 2, 16, 4, 4, 4, 2, 2, 4, 2, 2, 16, 8, 4, 4, 2, 2, 4, 4, 2, 16, 2, 2, 16, 2, 4, 4, 2, 4, 128, 2, 2, 4, 4, 2, 4, 4, 2, 16, 4, 2, 4, 2, 4, 4, 2, 8, 16, 8, 2, 4, 2, 4, 8
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A055653, A318661 (numerators), A318663.

Programs

  • PARI
    up_to = 1+(2^16);
    A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA055653(n)));
    A318661(n) = numerator(v318661_62[n]);
    A318662(n) = denominator(v318661_62[n]);
    A318663(n) = valuation(A318662(n),2);
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, ((1 + X^2 - p*X^2 - X)/((1-X)*(1-p*X)))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 10 2025

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d 1.

A318672 Denominators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Comments

The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (possibly of A282446 and A318469).

Crossrefs

Cf. A049599, A318671 (numerators), A318673.

Programs

  • PARI
    up_to = (2^16)+1;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA049599(n) = factorback(apply(e -> (1+numdiv(e)),factor(n)[,2]));
    v318671_62 = DirSqrt(vector(up_to, n, A049599(n)));
    A318671(n) = numerator(v318671_62[n]);
    A318672(n) = denominator(v318671_62[n]);
    A318673(n) = valuation(A318672(n),2);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318673(n).

A257100 From fourth root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fourth power is 1/zeta; sequence gives numerator of b(n).

Original entry on oeis.org

1, -1, -1, -3, -1, 1, -1, -7, -3, 1, -1, 3, -1, 1, 1, -77, -1, 3, -1, 3, 1, 1, -1, 7, -3, 1, -7, 3, -1, -1, -1, -231, 1, 1, 1, 9, -1, 1, 1, 7, -1, -1, -1, 3, 3, 1, -1, 77, -3, 3, 1, 3, -1, 7, 1, 7, 1, 1, -1, -3, -1, 1, 3, -1463, 1, -1, -1, 3, 1, -1, -1, 21, -1, 1, 3, 3, 1, -1, -1, 77, -77, 1, -1, -3, 1, 1, 1, 7, -1, -3, 1, 3, 1, 1, 1, 231, -1, 3, 3, 9
Offset: 1

Views

Author

Wolfgang Hintze, Apr 16 2015

Keywords

Comments

Dirichlet g.f. of b(n) = a(n)/A256691(n) is (zeta(x))^(-1/4).
Denominator is the same as for Dirichlet g.f. (zeta(x))^(+1/4).
Formula holds for general Dirichlet g.f. zeta(x)^(-1/k) with k = 1, 2, ...

Crossrefs

Cf. family zeta^(-1/k): A257098/A046644 (k=2), A257099/A256689 (k=3), A257100/A256691 (k=4), A257101/A256693 (k=5).
Cf. family zeta^(+1/k): A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 4;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A257100 *)
    den = Denominator[t] (* A256691 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(-1/4))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 4;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A257100(j)/A256691(j) ~ n / (Gamma(-1/4) * log(n)^(5/4)) * (1 + 5*(gamma/4 + 1)/(4*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 05 2025

A257101 From fifth root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is 1/zeta; sequence gives numerator of b(n).

Original entry on oeis.org

1, -1, -1, -2, -1, 1, -1, -6, -2, 1, -1, 2, -1, 1, 1, -21, -1, 2, -1, 2, 1, 1, -1, 6, -2, 1, -6, 2, -1, -1, -1, -399, 1, 1, 1, 4, -1, 1, 1, 6, -1, -1, -1, 2, 2, 1, -1, 21, -2, 2, 1, 2, -1, 6, 1, 6, 1, 1, -1, -2, -1, 1, 2, -1596, 1, -1, -1, 2, 1, -1, -1, 12, -1, 1, 2, 2, 1, -1, -1, 21, -21, 1, -1, -2, 1, 1, 1, 6, -1, -2, 1, 2, 1, 1, 1, 399, -1, 2, 2, 4
Offset: 1

Views

Author

Wolfgang Hintze, Apr 16 2015

Keywords

Comments

Dirichlet g.f. of b(n) = A257101(n)/A256693(n) is (zeta(x))^(-1/5).
Denominator is the same as for Dirichlet g.f. (zeta(x))^(+1/5).
Formula holds for general Dirichlet g.f. zeta(x)^(-1/k) with k = 1, 2, ...

Crossrefs

Cf. family zeta^(-1/k): A257098/A046644 (k=2), A257099/A256689 (k=3), A257100/A256691 (k=4), A257101/A256693 (k=5).
Cf. family zeta^(+1/k): A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 5;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A257101 *)
    den = Denominator[t] (* A256693 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(-1/5))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 5;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A257101(j)/A256693(j) ~ n / (Gamma(-1/5) * log(n)^(6/5)) * (1 + 6*(gamma/5 + 1)/(5*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 05 2025

A317936 Numerators of sequence whose Dirichlet convolution with itself yields A100995 + A063524, that is, the characteristic function of A000961 (prime powers).

Original entry on oeis.org

1, 1, 1, 7, 1, -1, 1, 17, 7, -1, 1, -5, 1, -1, -1, 139, 1, -5, 1, -5, -1, -1, 1, -5, 7, -1, 17, -5, 1, 3, 1, 263, -1, -1, -1, -31, 1, -1, -1, -5, 1, 3, 1, -5, -5, -1, 1, 19, 7, -5, -1, -5, 1, -5, -1, -5, -1, -1, 1, 9, 1, -1, -5, 995, -1, 3, 1, -5, -1, 3, 1, -53, 1, -1, -5, -5, -1, 3, 1, 19, 139, -1, 1, 9, -1, -1, -1, -5, 1, 9
Offset: 1

Views

Author

Antti Karttunen, Aug 14 2018

Keywords

Crossrefs

Cf. A000961, A100995, A046644 (denominators).
Cf. also A317939.

Programs

  • PARI
    up_to = 65537;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v317936aux = DirSqrt(vector(up_to, n, if(1==n,1,isprimepower(n))));
    A317936(n) = numerator(v317936aux[n]);
    for(n=1,up_to,write("b317936.txt", n, " ", A317936(n)));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A100995(n) - Sum_{d|n, d>1, d 1.

A317938 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A001222 (bigomega n) + A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 17, 7, 3, 1, 11, 1, 3, 3, 139, 1, 11, 1, 11, 3, 3, 1, 15, 7, 3, 17, 11, 1, 3, 1, 263, 3, 3, 3, 17, 1, 3, 3, 15, 1, 3, 1, 11, 11, 3, 1, 83, 7, 11, 3, 11, 1, 15, 3, 15, 3, 3, 1, -3, 1, 3, 11, 995, 3, 3, 1, 11, 3, 3, 1, 11, 1, 3, 11, 11, 3, 3, 1, 83, 139, 3, 1, -3, 3, 3, 3, 15, 1, -3, 3, 11, 3, 3, 3, 189, 1, 11, 11, 17, 1, 3, 1, 15, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Crossrefs

Cf. A001222, A063524, A046644 (denominators).

Programs

  • PARI
    A317938aux(n) = if(1==n,n,(bigomega(n)-sumdiv(n,d,if((d>1)&&(dA317938aux(d)*A317938aux(n/d),0)))/2);
    A317938(n) = numerator(A317938aux(n));
    
  • PARI
    \\ Memoized implementation:
    memo317938 = Map();
    A317938aux(n) = if(1==n,n,if(mapisdefined(memo317938,n),mapget(memo317938,n),my(v = (bigomega(n)-sumdiv(n,d,if((d>1)&&(dA317938aux(d)*A317938aux(n/d),0)))/2); mapput(memo317938,n,v); (v)));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001222(n) - Sum_{d|n, d>1, d 1.

A317939 Numerators of sequence whose Dirichlet convolution with itself yields A080339 = A010051 (characteristic function of primes) + A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 3, 1, -1, -1, -5, 1, 3, 1, 3, -1, -1, 1, -5, -1, -1, 1, 3, 1, 3, 1, 7, -1, -1, -1, -15, 1, -1, -1, -5, 1, 3, 1, 3, 3, -1, 1, 35, -1, 3, -1, 3, 1, -5, -1, -5, -1, -1, 1, -15, 1, -1, 3, -21, -1, 3, 1, 3, -1, 3, 1, 35, 1, -1, 3, 3, -1, 3, 1, 35, -5, -1, 1, -15, -1, -1, -1, -5, 1, -15, -1, 3, -1, -1, -1, -63, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 14 2018

Keywords

Crossrefs

Cf. A010051, A080339, A046644 (denominators).

Programs

  • PARI
    up_to = 65537;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v317939aux = DirSqrt(vector(up_to, n, if(1==n,1,isprime(n))));
    A317939(n) = numerator(v317939aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A010051(n) - Sum_{d|n, d>1, d 1.
Previous Showing 31-40 of 55 results. Next