cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A273373 Squares ending in digit 6.

Original entry on oeis.org

16, 36, 196, 256, 576, 676, 1156, 1296, 1936, 2116, 2916, 3136, 4096, 4356, 5476, 5776, 7056, 7396, 8836, 9216, 10816, 11236, 12996, 13456, 15376, 15876, 17956, 18496, 20736, 21316, 23716, 24336, 26896, 27556, 30276, 30976, 33856, 34596, 37636, 38416, 41616
Offset: 1

Views

Author

Vincenzo Librandi, May 21 2016

Keywords

Comments

These are the only squares whose second last digit is odd. This implies that the only squares whose last two digits are the same are those ending with 0 or 4; those ending with 1, 5, and 9 are paired with even second last digits. - Waldemar Puszkarz, May 24 2016

Crossrefs

Cf. A017341 (numbers ending in 6), A017343 (cubes ending in 6).
Cf. squares with last digit k: A017270 (k=0), A273372 (k=1), A273375 (k=4), A017330 (k=5), this sequence (k=6), A273374 (k=9).

Programs

  • Magma
    /* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 6];
    
  • Magma
    [(10*n - 3*(-1)^n - 5)^2/4: n in [1..50]];
  • Maple
    seq(seq((10*i+j)^2,j=[4,6]),i=0..20); # Robert Israel, May 24 2016
  • Mathematica
    Table[(10 n - 3 (-1)^n - 5)^2/4, {n, 1, 50}]
    CoefficientList[Series[4 (4 + 5 x + 32 x^2 + 5 x^3 + 4 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x]
    Select[Range[250]^2,Mod[#,10]==6&] (* Harvey P. Dale, May 31 2020 *)

Formula

G.f.: 4*x*(4 + 5*x + 32*x^2 + 5*x^3 + 4*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 4*A047221(n)^2 = (10*n - 3*(-1)^n - 5)^2/4.
a(n) = A090773(n)^2. - Michel Marcus, May 25 2016
Sum_{n>=1} 1/a(n) = 2*Pi^2/(25*(5+sqrt(5))). - Amiram Eldar, Feb 16 2023

Extensions

Corrected and extended by Bruno Berselli, May 23 2016

A292612 a(n) = F(n)^2 + 4*(-1)^n = F(n+3)*F(n-3), where F = A000045.

Original entry on oeis.org

4, -3, 5, 0, 13, 21, 68, 165, 445, 1152, 3029, 7917, 20740, 54285, 142133, 372096, 974173, 2550405, 6677060, 17480757, 45765229, 119814912, 313679525, 821223645, 2149991428, 5628750621, 14736260453, 38580030720, 101003831725, 264431464437, 692290561604, 1812440220357
Offset: 0

Views

Author

Bruno Berselli, Sep 20 2017

Keywords

Comments

This is the case k=3 of the identity F(n)^2 - F(k)^2*(-1)^(n+k) = F(n+k)*F(n-k), known also as Catalan's identity.

Crossrefs

Cf. A000045, A001622, A005248: Lucas(2*n), A001654: F(n)*F(n+1).
Cf. A007598 (k=0), A059929 (k=1, without initial 1), A192883 (k=2, without initial -1), this sequence (k=3).

Programs

  • GAP
    List([0..10^2],n ->Fibonacci(n)^2+4*(-1)^n); # Muniru A Asiru, Sep 26 2017
  • Magma
    [Fibonacci(n)^2+4*(-1)^n: n in [0..40]];
    
  • Maple
    with(combinat,fibonacci):  A292612:=seq(fibonacci(n)^2+4*(-1)^n, n=0..10^2); # Muniru A Asiru, Sep 26 2017
  • Mathematica
    Table[Fibonacci[n]^2 + 4 (-1)^n, {n, 0, 40}]
  • PARI
    for(n=0, 40, print1(fibonacci(n)^2+4*(-1)^n", "));
    
  • PARI
    Vec((4-11*x+3*x^2)/((1+x)*(1-3*x+x^2))+O(x^30)) \\ Colin Barker, Sep 20 2017
    
  • Sage
    [fibonacci(n)^2+4*(-1)^n for n in range(40)]
    

Formula

G.f.: (4 - 11*x + 3*x^2)/((1 + x)*(1 - 3*x + x^2)).
a(n) = a(-n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = 4*A001654(n+1) - 11*A001654(n) + 3*A001654(n-1) with A001654(-1)=0.
5*a(n) = Lucas(2*n) + 18*(-1)^n. Note that Lucas(2*n) + r*(-1)^n is divisible by 5 for r = -2, 3, -7, 8, -12, 13, -17, 18, -22, 23, -27, ... = (-1/4)*(3 + 5*(2*m+1)*(-1)^m) = (-1)^m*A047221(m). On the other hand, a(n) is divisible by 5 when n is a member of A047221.
a(n) = (1/5)*(18*(-1)^n + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n). - Colin Barker, Sep 20 2017
Sum_{n>=4} 1/a(n) = 143/960. - Amiram Eldar, Oct 05 2020
Sum_{n>=4} (-1)^n/a(n) = 3/(4*phi) - 407/960, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 06 2020

A153180 a(n) = L(13n)/L(n) where L(n) = Lucas number A000204(n).

Original entry on oeis.org

521, 90481, 35355581, 10525900321, 3489827263001, 1111126318086721, 359316586176453881, 115509240442846111681, 37216910406644366498621, 11980863523543017476802001, 3858153294795970321295258921
Offset: 1

Views

Author

Artur Jasinski, Dec 20 2008

Keywords

Comments

All numbers in this sequence are:
congruent to 1 mod 10
congruent to 1 mod 100 (iff n is congruent to 0 mod 5),Q congruent to 21 mod 100 (iff n is congruent to 1 or 4 mod 5),
congruent to 81 mod 100 (iff n is congruent to 2 or 3 mod 5).Q

Crossrefs

Programs

  • Mathematica
    Table[LucasL[13 n]/LucasL[n], {n, 1, 150}]

Formula

a(n)= +233*a(n-1) +33552*a(n-2) -1493064*a(n-3) -27372840*a(n-4) +186135312*a(n-5) +488605194*a(n-6) -488605194*a(n-7) -186135312*a(n-8) +27372840*a(n-9) +1493064*a(n-10) -33552*a(n-11) -233*a(n-12) +a(n-13). G.f.: -1+ (-2-123*x)/(x^2+123*x+1) +(2-322*x)/(x^2-322*x+1) +(-2-3*x)/(x^2+3*x+1) +(2-7*x)/(x^2-7*x+1) +(2-47*x)/(x^2-47*x+1) -1/(x-1)+ (-2-18*x)/(x^2+18*x+1). [From R. J. Mathar, Oct 22 2010]

A212423 Frobenius pseudoprimes == 2,3 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

5777, 10877, 75077, 100127, 113573, 161027, 162133, 231703, 430127, 635627, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 2263127, 2435423, 2662277, 3175883, 3399527, 3452147, 3774377, 3900797, 4109363, 4226777, 4403027, 4828277, 4870847
Offset: 1

Views

Author

Max Alekseyev, May 16 2012

Keywords

Comments

Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". However n = 5777 is the first Frobenius pseudoprime with respect to x^2 - x - 1 that has Jacobi symbol (5/n) = -1, i.e., n == 2,3 (mod 5). Unrestricted version with the first term 4181 is given in A212424.
Intersection of A212424 and A047221.
Composite k == 2,3 (mod 5) such that Fibonacci(k) == -1 (mod k) and that k divides Fibonacci(k+1). - Jianing Song, Sep 12 2018

References

  • R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.

Crossrefs

Programs

  • PARI
    { isFP23(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x) }

A016907 (5n+4)^11.

Original entry on oeis.org

4194304, 31381059609, 4049565169664, 116490258898219, 1521681143169024, 12200509765705829, 70188843638032384, 317475837322472439, 1196683881290399744, 3909821048582988049, 11384956040305711104
Offset: 0

Views

Author

Keywords

Comments

If 5n+4 is a perfect square, that is for n=0,1,9,12,28,33,57,64,..., a(n)=A010810(j), where the indices j are listed in A047221. - R. J. Mathar, Apr 22 2008.

Programs

Formula

G.f.: (x^11 +362797044*x^10 +280958106005*x^9 +14192390602560*x^8 +157922022917730*x^7 +565509776420088*x^6 +753319100251602*x^5 +384167580654720*x^4 +69965704049565*x^3 +3673269278420*x^2 +31330727961*x +4194304) / (x -1)^12. [Colin Barker, Feb 22 2013]

A318958 A(n, k) is a square array read in the decreasing antidiagonals, for n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 3, 2, 2, 0, 1, 3, 3, 4, 3, 3, 0, 3, 4, 6, 6, 7, 6, 6, 0, 2, 5, 6, 8, 8, 9, 8, 8, 0, 4, 6, 9, 10, 12, 12, 13, 12, 12, 0, 3, 7, 9, 12, 13, 15, 15, 16, 15, 15, 0, 5, 8, 12, 14, 17, 18, 20, 20, 21, 20, 20
Offset: 0

Views

Author

Paul Curtz, Sep 06 2018

Keywords

Examples

			The array starts:
[n\k][0,   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, ...]
[0]   0,   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, ... = A000004
[1]   0,  -1,  1,  0,  2,  1,  3,  2,  4,  3,  5,  4, ... = A028242(n-2)
[2]  -1,   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ... = A023443(n)
[3]   0,   0,  3,  3,  6,  6,  9,  9, 12, 12, 15, 15, ... = 3*A004526(n)
[4]   0,   2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, ... = A005843(n)
[5]   2,   3,  7,  8, 12, 13, 17, 18, 22, 23, 27, 28, ... = A047221(n+1)
[6]   3,   6,  9, 12, 15, 18, 21, 24, 27, 30, 33, 36, ... = A008585(n+1)
[7]   6,   8, 13, 15, 20, 22, 27, 29, 34, 36, 41, 43, ... = A047336(n+2)
[8]   8,  12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, ... = A008586(n+2)
Successive columns: A198442(n-2), A198442(n-1), A004652(n), A198442(n+1), A198442(n+2), A079524(n), ... .
First subdiagonal: 0, 0, 3, 6, ... = A242477(n).
First upperdiagonal: 0, 1, 2, 6, 10, ... = A238377(n-1).
Array written as a triangle:
0;
0,  0;
0, -1, -1;
0,  1,  0, 0;
0,  0,  1, 0, 0;
0,  2,  2, 3, 2, 2;
etc.
		

Crossrefs

Programs

  • Maple
    A := proc(n, k) option remember; local h;
    h := n -> `if`(n<3, [0, 0, -1][n+1], iquo(n^2-4*n+3, 4));
    if k = 0 then h(n) elif k = 1 then h(n+1) else A(n, k-2) + n fi end: # Peter Luschny, Sep 08 2018
  • Mathematica
    h[n_] := If[n < 3, {0, 0, -1}[[n + 1]], Quotient[n^2 - 4 n + 3, 4]];
    A[n_, k_] := A[n, k] = If[k == 0, h[n], If[k == 1, h[n+1], A[n, k-2] + n]];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 22 2019, after Peter Luschny *)

Formula

Let h(n) = 0, 0, -1, A198442(1), A198442(2), A198442(3), ... Then A(n, 0) = h(n), A(n, 1) = h(n+1) and A(n, k) = A(n, k-2) + n otherwise.
Previous Showing 31-36 of 36 results.