cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A196791 a(n) = A047848(9, n).

Original entry on oeis.org

1, 2, 14, 158, 1886, 22622, 271454, 3257438, 39089246, 469070942, 5628851294, 67546215518, 810554586206, 9726655034462, 116719860413534, 1400638324962398, 16807659899548766, 201691918794585182, 2420303025535022174, 29043636306420266078, 348523635677043192926
Offset: 0

Views

Author

Vincenzo Librandi, Oct 11 2011

Keywords

Crossrefs

Cf. A001021 (first differences).

Programs

  • Magma
    [(12^n+10)/11: n in [0..20]];
    
  • Mathematica
    LinearRecurrence[{13,-12},{1,2},30] (* Harvey P. Dale, Sep 07 2015 *)
    (12^Range[0,40] +10)/11 (* G. C. Greubel, Jan 17 2025 *)
  • Python
    def A196791(n): return (pow(12, n) + 10)//11
    print([A196791(n) for n in range(41)]) # G. C. Greubel, Jan 17 2025

Formula

a(n) = (12^n + 10)/11.
a(n) = 12*a(n-1) - 10, with a(0) = 1.
G.f.: (1-11*x)/((1-x)*(1-12*x)). - Bruno Berselli, Oct 11 2011
From Elmo R. Oliveira, Aug 30 2024: (Start)
E.g.f.: exp(x)*(exp(11*x) + 10)/11.
a(n) = 13*a(n-1) - 12*a(n-2) for n > 1. (End)

A196792 a(n) = A047848(10, n).

Original entry on oeis.org

1, 2, 15, 184, 2381, 30942, 402235, 5229044, 67977561, 883708282, 11488207655, 149346699504, 1941507093541, 25239592216022, 328114698808275, 4265491084507564, 55451384098598321, 720867993281778162, 9371283912663116095, 121826690864620509224, 1583746981240066619901
Offset: 0

Views

Author

Vincenzo Librandi, Oct 11 2011

Keywords

Crossrefs

Cf. A001022 (first differences).

Programs

  • Magma
    [(13^n+11)/12: n in [0..20]];
    
  • Mathematica
    (13^Range[0,40] +11)/12 (* G. C. Greubel, Jan 17 2025 *)
  • Python
    def A196792(n): return (pow(13, n) + 11)//12
    print([A196792(n) for n in range(41)]) # G. C. Greubel, Jan 17 2025

Formula

a(n) = (13^n + 11)/12.
a(n) = 13*a(n-1) - 11, with a(0) = 1.
G.f.: (1-12*x)/((1-x)*(1-13*x)). - Bruno Berselli, Oct 11 2011
From Elmo R. Oliveira, Aug 30 2024: (Start)
E.g.f.: exp(x)*(exp(12*x) + 11)/12.
a(n) = 14*a(n-1) - 13*a(n-2) for n > 1. (End)

A196793 a(n) = A047848(n, n).

Original entry on oeis.org

1, 2, 7, 44, 401, 4682, 66431, 1111112, 21435889, 469070942, 11488207655, 311505013052, 9267595563617, 300239975158034, 10523614159962559, 396861212733968144, 16024522975978953761, 689852631578947368422, 31544039619835776489479
Offset: 0

Views

Author

Vincenzo Librandi, Oct 11 2011

Keywords

Crossrefs

Programs

Formula

a(n) = ((n+3)^n + n + 1)/(n+2).

A343138 Array A(k, n) read by descending antidiagonals: A(k, n) = Sum_{m=0..n} F(k, m)^2, where F are the k-generalized Fibonacci numbers A092921.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 6, 2, 1, 0, 1, 5, 15, 6, 2, 1, 0, 1, 6, 40, 22, 6, 2, 1, 0, 1, 7, 104, 71, 22, 6, 2, 1, 0, 1, 8, 273, 240, 86, 22, 6, 2, 1, 0, 1, 9, 714, 816, 311, 86, 22, 6, 2, 1, 0, 1, 10, 1870, 2752, 1152, 342, 86, 22, 6, 2, 1, 0
Offset: 0

Views

Author

Peter Luschny, Apr 06 2021

Keywords

Examples

			Array starts:
  n = 0  1  2  3   4   5    6     7     8     9      10
------------------------------------------------------------
[k=0] 0, 1, 1, 1,  1,  1,   1,    1,    1,     1,     1, ...  [A057427]
[k=1] 0, 1, 2, 3,  4,  5,   6,    7,    8,     9,    10, ...  [A001477]
[k=2] 0, 1, 2, 6, 15, 40, 104,  273,  714,  1870,  4895, ...  [A001654]
[k=3] 0, 1, 2, 6, 22, 71, 240,  816, 2752,  9313, 31514, ...  [A107239]
[k=4] 0, 1, 2, 6, 22, 86, 311, 1152, 4288, 15952, 59216, ...
[k=5] 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, ...
[k=6] 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, ...
[k=7] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, ...
[k=8] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, ...
[k=9] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...
[...]
[ oo] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...  [A047849]
Note that the first parameter in A(k, n) refers to rows, and the second parameter refers to columns, as always. The usual naming convention for the indices is not adhered to because the row sequences are the sums of the squares of the k-bonacci numbers.
		

References

  • Greg Dresden and Yichen Wang, Sums and convolutions of k-bonacci and k-Lucas numbers, draft 2021.

Crossrefs

Programs

  • Maple
    F := (k, n) -> (F(k, n) := `if`(n<2, n, add(F(k, n-j), j = 1..min(k, n)))):
    A := (k, n) -> add(F(k, m)^2, m = 0..n):
    seq(seq(A(k, n-k), k=0..n), n = 0..11);
    # The following two functions implement Russell Jay Hendel's formula for k >= 2:
    T := (k, n) -> (n + 3)*(k - n) - 4:
    H := (k, n) -> (2*add(j*add((m-k+1)*F(k, n+j)*F(k, n+m), m = j+1..k), j = 1..k-1)
    - add(T(k, j-1)*F(k, n+j)^2, j = 1..k) + (k - 2))/(2*k - 2):
    seq(lprint([k], seq(H(k, n), n = 0..11)), k=2..9); # Peter Luschny, Apr 07 2021
  • Mathematica
    A343138[k_, len_] := Take[Accumulate[LinearRecurrence[PadLeft[{1}, k, 1], PadLeft[{1}, k], len + k]^2], -len - 2];
    A343138[0, len_] := Table[Boole[n != 0], {n, 0, len}];
    A343138[1, len_] := Table[n, {n, 0, len}];
    (* Table: *) Table[A343138[k, 12], {k, 0, 9}]
    (* Sequence / descending antidiagonals: *)
    Table[Table[Take[A343138[j, 12], {k + 1 - j, k + 1 - j}], {j, 0, k}], {k, 0, 10}] // Flatten (* Georg Fischer, Apr 08 2021 *)

Formula

Russell Jay Hendel gives the following representation, valid for k >= 2:
A(n, k) = Sum_{m=0..n} F(k, m)^2 = (1/(2*k-2)) * (2*Sum_{j=1..k-1}(j*Sum_{m=j+1..k} (m-k+1) * F(k, n+j) * F(k, n+m)) - Sum_{j=1..k}(A343125(k, j-1) * F(k, n+j)^2) + (k - 2)). - Peter Luschny, Apr 07 2021

A377885 Cogrowth sequence of the 16-element quasihedral group SD16 = .

Original entry on oeis.org

1, 1, 1, 4, 28, 136, 544, 2080, 8128, 32512, 130816, 524800, 2099200, 8390656, 33550336, 134201344, 536854528, 2147516416, 8590065664, 34359869440, 137438691328, 549754765312, 2199022206976, 8796095119360, 35184380477440, 140737496743936, 562949936644096
Offset: 0

Views

Author

Sean A. Irvine, Nov 10 2024

Keywords

Comments

Gives the even terms, all the odd terms are 0.
Also called QD16, Q8:C2. Gap identifier 16,8.

Crossrefs

Cf. A047849 (D4), A007582 (D8), A071930 (Q8), A377840 (C8 X C2), A377883 (M4(2)).

Formula

G.f.: (6*x^3-7*x^2+5*x-1) / ((4*x-1) * (4*x^2-2*x+1)).

A120462 Expansion of -2*x*(-3-2*x+4*x^2) / ((x-1)*(2*x+1)*(2*x-1)*(1+x)).

Original entry on oeis.org

0, 6, 4, 22, 20, 86, 84, 342, 340, 1366, 1364, 5462, 5460, 21846, 21844, 87382, 87380, 349526, 349524, 1398102, 1398100, 5592406, 5592404, 22369622, 22369620, 89478486, 89478484, 357913942, 357913940, 1431655766, 1431655764, 5726623062
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jun 28 2006

Keywords

Comments

Top element of the vector obtained by multiplying the n-th power of the 6 X 6 matrix [[0, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 0, 1, 0, 1], [1, 0, 0, 0, 1, 0]] by the column vector [0, 1, 1, 2, 3, 5].

Programs

  • Mathematica
    M = {{0, 1, 0, 0, 0, 1}, {1, 0, 1, 0, 0, 0}, {0, 1, 0, 1, 0, 0}, {0, 0, 1, 0, 1, 0}, {0, 0, 0, 1, 0, 1}, {1, 0, 0, 0, 1, 0}} v[1] = {0, 1, 1, 2, 3, 5} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    LinearRecurrence[{0,5,0,-4},{0,6,4,22},40] (* Harvey P. Dale, Jul 28 2024 *)
  • PARI
    concat(0, Vec(2*x*(3+2*x-4*x^2)/((1-x)*(1+x)*(1-2*x)*(1+2*x)) + O(x^40))) \\ Colin Barker, Sep 09 2016

Formula

a(2*n+1) = A047849(n+2). a(2*n)= 2*A020988(n). - R. J. Mathar, Nov 07 2011
From Colin Barker, Sep 09 2016: (Start)
a(n) = -2*(1/6 + (-2)^n/3 + (-1)^n/2 - 2^n).
a(n) = 5*a(n-2)-4*a(n-4) for n>3.
(End)

A142595 Triangle T(n,k) = 2*T(n-1, k-1) + 2*T(n-1, k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 22, 40, 22, 1, 1, 46, 124, 124, 46, 1, 1, 94, 340, 496, 340, 94, 1, 1, 190, 868, 1672, 1672, 868, 190, 1, 1, 382, 2116, 5080, 6688, 5080, 2116, 382, 1, 1, 766, 4996, 14392, 23536, 23536, 14392, 4996, 766, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 22 2008

Keywords

Comments

This triangle is dominated by the Eulerian numbers A008292.

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   4,    1;
  1,  10,   10,     1;
  1,  22,   40,    22,     1;
  1,  46,  124,   124,    46,     1;
  1,  94,  340,   496,   340,    94,     1;
  1, 190,  868,  1672,  1672,   868,   190,    1;
  1, 382, 2116,  5080,  6688,  5080,  2116,  382,   1;
  1, 766, 4996, 14392, 23536, 23536, 14392, 4996, 766, 1;
		

Crossrefs

Cf. A008292, A047849 (row sums), A119258.

Programs

  • Magma
    function T(n,k)
      if k eq 1 or k eq n then return 1;
      else return 2*(T(n-1, k-1) + T(n-1, k));
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 13 2021
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 2*(T[n-1, k-1] +T[n-1, k])];
    Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 13 2021 *)
    a[0] = {1}; a[1] = {1, 1};
    a[n_]:= a[n]= 2*Join[a[n-1], {-1/2}] + 2*Join[{-1/2}, a[n-1]];
    Table[a[n], {n,0,10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
  • Sage
    @CachedFunction
    def T(n,k): return 1 if k==1 or k==n else 2*(T(n-1, k-1) + T(n-1, k))
    flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 13 2021

Formula

Sum_{k=0..n} T(n, k) = (4^(n-1) + 2)/3 = A047849(n-1).

Extensions

Edited by N. J. A. Sloane, Dec 11 2008

A308124 a(n) = (2 + 7*4^n)/3.

Original entry on oeis.org

3, 10, 38, 150, 598, 2390, 9558, 38230, 152918, 611670, 2446678, 9786710, 39146838, 156587350, 626349398, 2505397590, 10021590358, 40086361430, 160345445718, 641381782870, 2565527131478, 10262108525910, 41048434103638, 164193736414550, 656774945658198, 2627099782632790
Offset: 0

Views

Author

Paul Curtz, Jul 23 2019

Keywords

Comments

Consider A092808 and its differences:
1, 0, 3, 1, 11, 5, 43, 21, 171, ...
-1, 3, -2, 10, -6, 38, -22, 150, ... = b(n).
a(n) is the second bisection of b(n). The first is A047849.
a(n) mod 9 is the period 9 sequence: repeat [3, 1, 2, 6, 4, 5, 0, 7, 8].
b(n) + b(n+1) = A135520(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-4},{3,10},30] (* Paolo Xausa, Nov 13 2023 *)
    (2+7*4^Range[0,30])/3 (* Harvey P. Dale, Aug 15 2025 *)
  • PARI
    a(n) = (2 + 7*4^n)/3; \\ Stefano Spezia, Jul 23 2019
    
  • PARI
    Vec((3 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^40)) \\ Colin Barker, Jul 23 2019

Formula

a(n) = 4*a(n-1) - 2 for n=1,2,... , a(0) = 3.
a(n+1) = a(n) + A002042(n).
Binomial transform of A141495(n+1) = 3, 7, 21, ....
From Colin Barker, Jul 23 2019: (Start)
G.f.: (3 - 5*x) / ((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n>1.
(End)
a(n+2) = a(n) + 35*A000302(n) for n=0,1,2, ... .

Extensions

a(14)-a(25) from Stefano Spezia, Jul 23 2019

A354602 a(n) is the number of trivial braids on 3 strands with 2*n crossings.

Original entry on oeis.org

1, 4, 28, 244, 2412, 25804, 290932, 3403404, 40914508
Offset: 0

Views

Author

Alexei Vernitski, Jul 08 2022

Keywords

Comments

In other words, a(n) is the number of products of 2*n generators in the braid group B_3 which are equal to the identity element of the group.
Only braids with an even number of crossings are considered because a braid with an odd number of crossings cannot be trivial.
If we do include the 0s corresponding to the odd values of the number of crossings, a group-theoretical name for this sequence is the cogrowth sequence of B_3.

Crossrefs

Cf. A000984 (number of trivial braids on 2 strands with 2*n crossings), A047849 (number of trivial permutations of 3 elements after 2*n adjacent transpositions).

A166124 Triangle, read by rows, given by [0,1/2,1/2,0,0,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2009

Keywords

Examples

			Triangle begins :
1 ;
0,2 ;
0,1,2 ;
0,1,1,2 ;
0,1,1,1,2 ;
0,1,1,1,1,2 ;
0,1,1,1,1,1,2 ; ...
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^(n-k)= A166122(n), A166114(n), A084222(n), A084247(n), A000034(n), A040000(n), A000027(n+1), A000079(n), A007051(n), A047849(n), A047850(n), A047851(n), A047852(n), A047853(n), A047854(n), A047855(n), A047856(n) for x= -5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^k= A000007(n), A000027(n+1), A033484(n), A134931(n), A083597(n) for x= 0,1,2,3,4 respectively.
T(n,k)= A166065(n,k)/2^(n-k).
G.f.: (1-x+x*y)/(1-x-x*y+x^2*y). - Philippe Deléham, Nov 09 2013
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013
Previous Showing 31-40 of 40 results.