A122802
Number of labeled bipartite graphs on n vertices with no isolated vertices.
Original entry on oeis.org
1, 0, 1, 6, 29, 510, 5032, 161406, 3294405, 194342910, 7934652356, 881008805886, 71275547085536, 15178191426486270, 2434250064518832302, 1008694542117649154046, 321680912414994434144165, 262063364967549826752315390, 166681427053102507699172431372
Offset: 0
-
a(n)={sum(k=0, n, binomial(n, k)*(2^k-2)^(n-k)) - if(n%2==0&&n>0, binomial(n-1, n/2)*sum(k=0, n/2, binomial(n/2, k)*(-1)^k*(2^(n/2-k)-1)^(n/2)))} \\ Andrew Howroyd, Nov 07 2019
A172388
a(n) = Sum_{k=0..n} (-1)^k*C(n,k)*2^(k*(n-k)).
Original entry on oeis.org
1, 0, -2, 0, 34, 0, -2942, 0, 1144834, 0, -1906714622, 0, 13264071114754, 0, -380188784001777662, 0, 44530311225683389448194, 0, -21199108233888497863938801662, 0, 40869840581497696551494454452682754
Offset: 0
O.g.f.: A(x) = 1 - 2*x^2 + 34*x^4 - 2942*x^6 + 1144834*x^8 +...
A(x) = 1/(1+x) + x/(1+2*x)^2 + x^2/(1+2^2*x)^3 + x^3/(1+2^3*x)^4 +...+ x^n/(1+2^n*x)^(n+1) +...
E.g.f.: E(x) = 1 - 2*x^2/2! + 34*x^4/4! - 2942*x^6/6! + 1144834*x^8/8! +...
E(x) = exp(-x) + exp(-2*x)*x + exp(-2^2*x)*x^2/2! + exp(-2^3*x)*x^3/3! +...+ exp(-2^n*x)*x^n/n! +...
-
{a(n)=sum(k=0,n,(-1)^k*binomial(n,k)*2^(k*(n-k)))}
-
{a(n)=polcoeff(sum(k=0, n, x^k/(1+2^k*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=n!*polcoeff(sum(k=0, n, exp(-2^k*x +x*O(x^n))*x^k/k!), n)}
A179534
Number of labeled split graphs on n vertices.
Original entry on oeis.org
1, 2, 8, 58, 632, 9654, 202484, 5843954, 233064944, 12916716526, 998745087980, 108135391731690, 16434082400952296, 3513344943520006118, 1058030578581541945316, 449389062270642095128546, 269419653009366144571801568, 228157953744571034350576205790
Offset: 1
- V. Bina, Enumeration of Labeled Split Graphs and Counts of Important Superclasses. In Adacher L., Flamini, M., Leo, G., Nicosia, G., Pacifici, A., Picialli, V. (Eds.). CTW 2011, Villa Mondragone, Frascati, pp. 72-75 (2011).
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- E. A. Bender, L. B. Richmond, and N. C. Wormald, Almost all chordal graphs split, J. Austral. Math. Soc. (Series A), 38 (1985), 214-221.
- V. Bina, Multidimensional probability distributions: Structure and learning, PHD Thesis. Fac. of Management, University of Economics in Prague (2011).
- Venkatesan Guruswami, Enumerative aspects of certain subclasses of perfect graphs, Discrete Mathematics 205 (1999), 97-117.
- J. M. Troyka, Split graphs: combinatorial species and asymptotics, arXiv:1803.07248 [math.CO], 2018-2019.
- J. M. Troyka, Split graphs: combinatorial species and asymptotics, Electron. J. Combin., 26 (2019), #P2.42.
-
A179534 := proc(n) local a,k; a := 1 ; for k from 2 to n do a := a+binomial(n,k)*( (2^k-1)^(n-k) -add(j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j)/(j+1), j=1..n-k) ) end do: a ; end proc: # R. J. Mathar, Jun 21 2011
-
a[n_] := 1 + Sum[Binomial[n,k]*((2^k-1)^(n-k) - Sum[j*k*Binomial[n-k,j]*(2^(k-1)-1)^(n-k-j)/(j+1), {j,1,n-k}]), {k,2, n}]; Array[a, 20] (* Stefano Spezia, Oct 29 2018 *)
-
b(n) = {sum(k=0, n, binomial(n, k)*2^(k*(n-k)))} \\ A047863(n)
a(n) = b(n) - n*b(n-1) \\ Andrew Howroyd, Jun 06 2021
a(12)-a(16) corrected and terms a(17) and beyond from
Andrew Howroyd, Jun 06 2021
A228890
Triangular array read by rows. T(n,k) is the number of 2-colored labeled graphs on n nodes with exactly k edges; n >= 0, 0 <= k <= A002620(n).
Original entry on oeis.org
1, 2, 4, 2, 8, 12, 6, 16, 48, 60, 32, 6, 32, 160, 360, 440, 310, 120, 20, 64, 480, 1680, 3480, 4680, 4212, 2520, 960, 210, 20, 128, 1344, 6720, 20720, 43680, 66108, 73514, 60480, 36540, 15820, 4662, 840, 70, 256, 3584, 24192, 103040, 308560, 686784, 1172976, 1565888, 1649340, 1373680, 900592, 459312, 178416, 50960, 10080, 1232, 70
Offset: 0
Triangle begins:
1;
2;
4, 2;
8, 12, 6;
16, 48, 60, 32, 6;
32, 160, 360, 440, 310, 120, 20;
64, 480, 1680, 3480, 4680, 4212, 2520, 960, 210, 20;
...
-
nn=6;f[x_,y_]:=Sum[Exp[x (1+y)^n]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]]//Grid
A381058
Irregular triangular array read by rows. Let S_n be the set of labeled graphs G on [n] with 2-colored nodes where black nodes are only connected to white nodes and vice versa. Orient the edges in each such graph G from black to white. T(n,k) is the number of graphs in S_n containing exactly k descents, n>=0, 0<=k<=A002620(n).
Original entry on oeis.org
1, 2, 5, 1, 16, 8, 2, 67, 56, 30, 8, 1, 374, 436, 358, 188, 68, 16, 2, 2825, 4143, 4508, 3460, 2032, 924, 320, 80, 13, 1, 29212, 50460, 66976, 66092, 52412, 34280, 18630, 8376, 3072, 892, 194, 28, 2, 417199, 811790, 1246486, 1471358, 1436404, 1195166, 859650, 537750, 292880, 138280, 56048, 19168, 5382, 1188, 192, 20, 1
Offset: 0
1;
2;
5, 1;
16, 8, 2;
67, 56, 30, 8, 1;
374, 436, 358, 188, 68, 16, 2;
2825, 4143, 4508, 3460, 2032, 924, 320, 80, 13, 1;
...
-
nn = 7; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1+y)^Binomial[n,2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z] /. y -> 1] // Grid
A172389
a(n) = Sum_{k=0..n} C(n,k)*3^(k*(n-k))/2^n.
Original entry on oeis.org
1, 1, 2, 7, 44, 481, 9272, 310087, 18164624, 1843946881, 326808099872, 100310221406407, 53656068398769344, 49686835289802328801, 80090696216400251499392, 223445962168511596412895367
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 44*x^4 + 481*x^5 + 9272*x^6 +...
A(x) = 2/(2-x) + 2*x/(2-3*x)^2 + 2*x^2/(2-3^2*x)^3 + 2*x^3/(2-3^3*x)^4 +...+ 2*x^n/(2-3^n*x)^(n+1) +...
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 44*x^4/4! + 481*x^5/5! +...
E(x) = exp(x/2) + exp(3*x/2)*x/2 + exp(3^2*x/2)*(x/2)^2/2! + exp(3^3*x/2)*(x/2)^3/3! +...+ exp(3^n*x/2)*(x/2)^n/n! +...
-
{a(n)=sum(k=0,n,binomial(n,k)*3^(k*(n-k)))/2^n}
-
{a(n)=n!*polcoeff(sum(k=0, n, exp(3^k*x/2 +x*O(x^n))*(x/2)^k/k!), n)}
-
{a(n)=polcoeff(sum(k=0, n, (x/2)^k/(1-3^k*x/2 +x*O(x^n))^(k+1)), n)}
A228859
Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 19, 15, 6, 1, 195, 125, 45, 10, 1, 3031, 1545, 480, 105, 15, 1, 67263, 27307, 7035, 1400, 210, 21, 1, 2086099, 668367, 140098, 24045, 3430, 378, 28, 1, 89224635, 22427001, 3746925, 536214, 68355, 7434, 630, 36, 1
Offset: 1
1,
1, 1,
3, 3, 1,
19, 15, 6, 1,
195, 125, 45, 10, 1,
3031, 1545, 480, 105, 15, 1,
-
nn=9;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[Exp[y Log[f[x]]/2],{x,0,nn}],{x,y}],1]]//Grid
-
# uses[bell_matrix from A264428, A001832]
# Adds 1,0,0,0,... as column 0 to the triangle.
bell_matrix(lambda n: A001832(n+1), 8) # Peter Luschny, Jan 21 2016
A340451
E.g.f.: Sum_{n>=0} x^n * cosh(2^n*x) / n!.
Original entry on oeis.org
1, 1, 2, 13, 98, 721, 7682, 165313, 4816898, 154732801, 7052328962, 587435092993, 67748952539138, 9011561121239041, 1692739935456460802, 557257804202631217153, 255875811615404841762818, 138681207656726645785559041, 105975684493162347867458764802
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 13*x^3/3! + 98*x^4/4! + 721*x^5/5! + 7682*x^6/6! + 165313*x^7/7! + 4816898*x^8/8! + 154732801*x^9/9! + ...
where
A(x) = cosh(x) + x*cosh(2*x) + x^2*cosh(2^2*x)/2! + x^3*cosh(2^3*x)/3! + x^4*cosh(2^4*x)/4! + x^5*cosh(2^5*x)/5! + ...
also
A(x) = exp(x) + x^2*exp(2^2*x)/2! + x^4*exp(2^4*x)/4! + x^6*exp(2^6*x)/6! + x^8*exp(2^8*x)/8! + ...
-
{a(n) = my(A = sum(m=0, n, x^m/m! * cosh(2^m*x +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A = sum(m=0, n\2, x^(2*m)/(2*m)! * exp(2^(2*m)*x +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
A340452
E.g.f.: Sum_{n>=0} x^n * sinh(2^n*x) / n!.
Original entry on oeis.org
1, 4, 13, 64, 721, 10624, 165313, 3672064, 154732801, 8959043584, 587435092993, 54484881424384, 9011561121239041, 2072928719458238464, 557257804202631217153, 211345500389721452314624, 138681207656726645785559041, 127174792727050845731397566464
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 13*x^3/3! + 64*x^4/4! + 721*x^5/5! + 10624*x^6/6! + 165313*x^7/7! + 3672064*x^8/8! + 154732801*x^9/9! + ...
where
A(x) = sinh(x) + x*sinh(2*x) + x^2*sinh(2^2*x)/2! + x^3*sinh(2^3*x)/3! + x^4*sinh(2^4*x)/4! + x^5*sinh(2^5*x)/5! + ...
also
A(x) = x*exp(2*x) + x^3*exp(2^3*x)/3! + x^5*exp(2^5*x)/5! + x^7*exp(2^7*x)/7! + x^9*exp(2^9*x)/9! + ...
-
{a(n) = my(A = sum(m=0, n, x^m/m! * sinh(2^m*x +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = my(A = sum(m=0, n\2+1, x^(2*m+1)/(2*m+1)! * exp(2^(2*m+1)*x +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
A355395
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(j*(n-j)) * binomial(n,j).
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 26, 16, 2, 1, 2, 10, 56, 162, 32, 2, 1, 2, 12, 98, 704, 1442, 64, 2, 1, 2, 14, 152, 2050, 15392, 18306, 128, 2, 1, 2, 16, 218, 4752, 84482, 593408, 330626, 256, 2, 1, 2, 18, 296, 9506, 318752, 7221250, 39691136, 8488962, 512, 2
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
2, 4, 6, 8, 10, 12, ...
2, 8, 26, 56, 98, 152, ...
2, 16, 162, 704, 2050, 4752, ...
2, 32, 1442, 15392, 84482, 318752, ...
- R. P. Stanley, Enumerative Combinatorics, Volume 1, Second Edition, Example 3.18.3(e), page 323.
-
T(n, k) = sum(j=0, n, k^(j*(n-j))*binomial(n, j));
Comments