cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A122802 Number of labeled bipartite graphs on n vertices with no isolated vertices.

Original entry on oeis.org

1, 0, 1, 6, 29, 510, 5032, 161406, 3294405, 194342910, 7934652356, 881008805886, 71275547085536, 15178191426486270, 2434250064518832302, 1008694542117649154046, 321680912414994434144165, 262063364967549826752315390, 166681427053102507699172431372
Offset: 0

Views

Author

Max Alekseyev, Sep 11 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)={sum(k=0, n, binomial(n, k)*(2^k-2)^(n-k)) - if(n%2==0&&n>0, binomial(n-1, n/2)*sum(k=0, n/2, binomial(n/2, k)*(-1)^k*(2^(n/2-k)-1)^(n/2)))} \\ Andrew Howroyd, Nov 07 2019

Formula

a(2n+1) = A052332(2n+1); a(2n) = A052332(2n) - A122801(n) for n > 0.

Extensions

Terms a(17) and beyond from Andrew Howroyd, Nov 07 2019

A172388 a(n) = Sum_{k=0..n} (-1)^k*C(n,k)*2^(k*(n-k)).

Original entry on oeis.org

1, 0, -2, 0, 34, 0, -2942, 0, 1144834, 0, -1906714622, 0, 13264071114754, 0, -380188784001777662, 0, 44530311225683389448194, 0, -21199108233888497863938801662, 0, 40869840581497696551494454452682754
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2010

Keywords

Examples

			O.g.f.: A(x) = 1 - 2*x^2 + 34*x^4 - 2942*x^6 + 1144834*x^8 +...
A(x) = 1/(1+x) + x/(1+2*x)^2 + x^2/(1+2^2*x)^3 + x^3/(1+2^3*x)^4 +...+ x^n/(1+2^n*x)^(n+1) +...
E.g.f.: E(x) = 1 - 2*x^2/2! + 34*x^4/4! - 2942*x^6/6! + 1144834*x^8/8! +...
E(x) = exp(-x) + exp(-2*x)*x + exp(-2^2*x)*x^2/2! + exp(-2^3*x)*x^3/3! +...+ exp(-2^n*x)*x^n/n! +...
		

Crossrefs

Cf. variants: A172389, A047863.

Programs

  • PARI
    {a(n)=sum(k=0,n,(-1)^k*binomial(n,k)*2^(k*(n-k)))}
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1+2^k*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, exp(-2^k*x +x*O(x^n))*x^k/k!), n)}

Formula

O.g.f.: A(x) = Sum_{n>=0} x^n/(1+2^n*x)^(n+1).
E.g.f.: E(x) = Sum_{n>=0} exp(-2^n*x)*x^n/n!.

A179534 Number of labeled split graphs on n vertices.

Original entry on oeis.org

1, 2, 8, 58, 632, 9654, 202484, 5843954, 233064944, 12916716526, 998745087980, 108135391731690, 16434082400952296, 3513344943520006118, 1058030578581541945316, 449389062270642095128546, 269419653009366144571801568, 228157953744571034350576205790
Offset: 1

Views

Author

Vladislav Bina, Jul 18 2010

Keywords

Comments

A split graph is a graph whose vertices can be partitioned into a clique and an independent set. - Justin M. Troyka, Oct 28 2018

References

  • V. Bina, Enumeration of Labeled Split Graphs and Counts of Important Superclasses. In Adacher L., Flamini, M., Leo, G., Nicosia, G., Pacifici, A., Picialli, V. (Eds.). CTW 2011, Villa Mondragone, Frascati, pp. 72-75 (2011).

Crossrefs

Programs

  • Maple
    A179534 := proc(n) local a,k; a := 1 ; for k from 2 to n do a := a+binomial(n,k)*( (2^k-1)^(n-k) -add(j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j)/(j+1), j=1..n-k) ) end do: a ; end proc: # R. J. Mathar, Jun 21 2011
  • Mathematica
    a[n_] := 1 + Sum[Binomial[n,k]*((2^k-1)^(n-k) - Sum[j*k*Binomial[n-k,j]*(2^(k-1)-1)^(n-k-j)/(j+1), {j,1,n-k}]), {k,2, n}]; Array[a, 20] (* Stefano Spezia, Oct 29 2018 *)
  • PARI
    b(n) = {sum(k=0, n, binomial(n, k)*2^(k*(n-k)))} \\ A047863(n)
    a(n) = b(n) - n*b(n-1) \\ Andrew Howroyd, Jun 06 2021

Formula

a(n) = 1 + Sum_{k=2..n} binomial(n,k)*( (2^k-1)^(n-k) - Sum_{j=1..n-k} j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j) /(j+1) ).
From Justin M. Troyka, Oct 28 2018: (Start)
a(n) = [ Sum_{k=0..n} binomial(n,k) 2^(k(n-k)) ] - [ n Sum_{k=0..n-1} binomial(n-1,k)*2^(k(n-k-1)) ] (see the Troyka link, Cor. 3.4).
a(n) = A047863(n) - n*A047863(n-1) (see the Troyka link, Cor. 3.4).
a(n) ~ A047863(n) (see Bender, Richmond, and Wormald, Cor. 1). (End)

Extensions

a(12)-a(16) corrected and terms a(17) and beyond from Andrew Howroyd, Jun 06 2021

A228890 Triangular array read by rows. T(n,k) is the number of 2-colored labeled graphs on n nodes with exactly k edges; n >= 0, 0 <= k <= A002620(n).

Original entry on oeis.org

1, 2, 4, 2, 8, 12, 6, 16, 48, 60, 32, 6, 32, 160, 360, 440, 310, 120, 20, 64, 480, 1680, 3480, 4680, 4212, 2520, 960, 210, 20, 128, 1344, 6720, 20720, 43680, 66108, 73514, 60480, 36540, 15820, 4662, 840, 70, 256, 3584, 24192, 103040, 308560, 686784, 1172976, 1565888, 1649340, 1373680, 900592, 459312, 178416, 50960, 10080, 1232, 70
Offset: 0

Views

Author

Geoffrey Critzer, Sep 07 2013

Keywords

Comments

A 2-colored labeled graph is a simple labeled graph in which each vertex is painted black or white and black vertices are only connected to white vertices and vice versa. [corrected by Geoffrey Critzer, Mar 27 2023]

Examples

			Triangle begins:
   1;
   2;
   4,   2;
   8,  12,    6;
  16,  48,   60,   32,    6;
  32, 160,  360,  440,  310,  120,   20;
  64, 480, 1680, 3480, 4680, 4212, 2520, 960, 210, 20;
  ...
		

Crossrefs

Row sums are A047863.
Column k=0 gives A000079.
Cf. A002620.

Programs

  • Mathematica
    nn=6;f[x_,y_]:=Sum[Exp[x (1+y)^n]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]]//Grid

Formula

E.g.f.: Sum_{n>=0} exp(1 + y)^n*x^n/n!

A381058 Irregular triangular array read by rows. Let S_n be the set of labeled graphs G on [n] with 2-colored nodes where black nodes are only connected to white nodes and vice versa. Orient the edges in each such graph G from black to white. T(n,k) is the number of graphs in S_n containing exactly k descents, n>=0, 0<=k<=A002620(n).

Original entry on oeis.org

1, 2, 5, 1, 16, 8, 2, 67, 56, 30, 8, 1, 374, 436, 358, 188, 68, 16, 2, 2825, 4143, 4508, 3460, 2032, 924, 320, 80, 13, 1, 29212, 50460, 66976, 66092, 52412, 34280, 18630, 8376, 3072, 892, 194, 28, 2, 417199, 811790, 1246486, 1471358, 1436404, 1195166, 859650, 537750, 292880, 138280, 56048, 19168, 5382, 1188, 192, 20, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 12 2025

Keywords

Comments

A descent in a labeled directed graph is an edge s->t such that s>t.
T(n,0) = A006116(n).

Examples

			    1;
    2;
    5,    1;
   16,    8,    2;
   67,   56,   30,    8,    1;
  374,  436,  358,  188,   68,  16,   2;
 2825, 4143, 4508, 3460, 2032, 924, 320, 80, 13, 1;
 ...
		

Crossrefs

Programs

  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1+y)^Binomial[n,2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,  Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z] /. y -> 1] // Grid

A172389 a(n) = Sum_{k=0..n} C(n,k)*3^(k*(n-k))/2^n.

Original entry on oeis.org

1, 1, 2, 7, 44, 481, 9272, 310087, 18164624, 1843946881, 326808099872, 100310221406407, 53656068398769344, 49686835289802328801, 80090696216400251499392, 223445962168511596412895367
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2010

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 44*x^4 + 481*x^5 + 9272*x^6 +...
A(x) = 2/(2-x) + 2*x/(2-3*x)^2 + 2*x^2/(2-3^2*x)^3 + 2*x^3/(2-3^3*x)^4 +...+ 2*x^n/(2-3^n*x)^(n+1) +...
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 44*x^4/4! + 481*x^5/5! +...
E(x) = exp(x/2) + exp(3*x/2)*x/2 + exp(3^2*x/2)*(x/2)^2/2! + exp(3^3*x/2)*(x/2)^3/3! +...+ exp(3^n*x/2)*(x/2)^n/n! +...
		

Crossrefs

Cf. variants: A135079, A047863.

Programs

  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*3^(k*(n-k)))/2^n}
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, exp(3^k*x/2 +x*O(x^n))*(x/2)^k/k!), n)}
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (x/2)^k/(1-3^k*x/2 +x*O(x^n))^(k+1)), n)}

Formula

O.g.f.: A(x) = Sum_{n>=0} 2*x^n/(2 - 3^n*x)^(n+1).
E.g.f.: E(x) = Sum_{n>=0} exp(3^n*x/2)*(x/2)^n/n!.
a(n) = A135079(n)/2^n.

A228859 Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 19, 15, 6, 1, 195, 125, 45, 10, 1, 3031, 1545, 480, 105, 15, 1, 67263, 27307, 7035, 1400, 210, 21, 1, 2086099, 668367, 140098, 24045, 3430, 378, 28, 1, 89224635, 22427001, 3746925, 536214, 68355, 7434, 630, 36, 1
Offset: 1

Views

Author

Geoffrey Critzer, Sep 05 2013

Keywords

Comments

The Bell transform of A001832(n+1) (without column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016

Examples

			1,
1, 1,
3, 3, 1,
19, 15, 6, 1,
195, 125, 45, 10, 1,
3031, 1545, 480, 105, 15, 1,
		

Crossrefs

Row sums are A047864.
Column 1 is A001832.
Cf. A047863.

Programs

  • Mathematica
    nn=9;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[Exp[y Log[f[x]]/2],{x,0,nn}],{x,y}],1]]//Grid
  • Sage
    # uses[bell_matrix from A264428, A001832]
    # Adds 1,0,0,0,... as column 0 to the triangle.
    bell_matrix(lambda n: A001832(n+1), 8) # Peter Luschny, Jan 21 2016

Formula

E.g.f.: sqrt(A(x)^y) where A(x) is the e.g.f. for A047863.
Sum_{k=1..n} T(n,k)*2^k = A047863(n).

A340451 E.g.f.: Sum_{n>=0} x^n * cosh(2^n*x) / n!.

Original entry on oeis.org

1, 1, 2, 13, 98, 721, 7682, 165313, 4816898, 154732801, 7052328962, 587435092993, 67748952539138, 9011561121239041, 1692739935456460802, 557257804202631217153, 255875811615404841762818, 138681207656726645785559041, 105975684493162347867458764802
Offset: 0

Views

Author

Paul D. Hanna, Jan 12 2021

Keywords

Comments

a(n) = A047863(n) - A340452(n) for n >= 0, in which A047863 gives the number of labeled graphs with 2-colored nodes when connected only to nodes of a different color.

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 13*x^3/3! + 98*x^4/4! + 721*x^5/5! + 7682*x^6/6! + 165313*x^7/7! + 4816898*x^8/8! + 154732801*x^9/9! + ...
where
A(x) = cosh(x) + x*cosh(2*x) + x^2*cosh(2^2*x)/2! + x^3*cosh(2^3*x)/3! + x^4*cosh(2^4*x)/4! + x^5*cosh(2^5*x)/5! + ...
also
A(x) = exp(x) + x^2*exp(2^2*x)/2! + x^4*exp(2^4*x)/4! + x^6*exp(2^6*x)/6! + x^8*exp(2^8*x)/8! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0, n, x^m/m! * cosh(2^m*x +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n\2, x^(2*m)/(2*m)! * exp(2^(2*m)*x +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: Sum_{n>=0} x^n * cosh(2^n*x) / n!.
E.g.f.: Sum_{n>=0} x^(2*n) * exp(4^n*x) / (2*n)!.

A340452 E.g.f.: Sum_{n>=0} x^n * sinh(2^n*x) / n!.

Original entry on oeis.org

1, 4, 13, 64, 721, 10624, 165313, 3672064, 154732801, 8959043584, 587435092993, 54484881424384, 9011561121239041, 2072928719458238464, 557257804202631217153, 211345500389721452314624, 138681207656726645785559041, 127174792727050845731397566464
Offset: 1

Views

Author

Paul D. Hanna, Jan 12 2021

Keywords

Comments

a(n) = A047863(n) - A340451(n) for n >= 0, in which A047863 gives the number of labeled graphs with 2-colored nodes when connected only to nodes of a different color.

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 13*x^3/3! + 64*x^4/4! + 721*x^5/5! + 10624*x^6/6! + 165313*x^7/7! + 3672064*x^8/8! + 154732801*x^9/9! + ...
where
A(x) = sinh(x) + x*sinh(2*x) + x^2*sinh(2^2*x)/2! + x^3*sinh(2^3*x)/3! + x^4*sinh(2^4*x)/4! + x^5*sinh(2^5*x)/5! + ...
also
A(x) = x*exp(2*x) + x^3*exp(2^3*x)/3! + x^5*exp(2^5*x)/5! + x^7*exp(2^7*x)/7! + x^9*exp(2^9*x)/9! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0, n, x^m/m! * sinh(2^m*x +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n\2+1, x^(2*m+1)/(2*m+1)! * exp(2^(2*m+1)*x +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

E.g.f.: Sum_{n>=0} x^n * sinh(2^n*x) / n!.
E.g.f.: Sum_{n>=0} x^(2*n+1) * exp(2^(2*n+1)*x) / (2*n+1)!.

A355395 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(j*(n-j)) * binomial(n,j).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 26, 16, 2, 1, 2, 10, 56, 162, 32, 2, 1, 2, 12, 98, 704, 1442, 64, 2, 1, 2, 14, 152, 2050, 15392, 18306, 128, 2, 1, 2, 16, 218, 4752, 84482, 593408, 330626, 256, 2, 1, 2, 18, 296, 9506, 318752, 7221250, 39691136, 8488962, 512, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2022

Keywords

Comments

The Stanley reference below describes a family of binomial posets whose elements are two colored graphs with vertices labeled on [n] and with edges labeled on [k-1]. T(n,k) is the number of elements in an n-interval of such a binomial poset. - Geoffrey Critzer, Aug 21 2023

Examples

			Square array begins:
  1,  1,    1,     1,     1,      1, ...
  2,  2,    2,     2,     2,      2, ...
  2,  4,    6,     8,    10,     12, ...
  2,  8,   26,    56,    98,    152, ...
  2, 16,  162,   704,  2050,   4752, ...
  2, 32, 1442, 15392, 84482, 318752, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume 1, Second Edition, Example 3.18.3(e), page 323.

Crossrefs

Columns k=0..4 give A040000, A000079, A047863, A135079, A355440.
Main diagonal gives A320287.
Cf. A009999.

Programs

  • PARI
    T(n, k) = sum(j=0, n, k^(j*(n-j))*binomial(n, j));

Formula

E.g.f. of column k: Sum_{j>=0} exp(k^j * x) * x^j/j!.
G.f. of column k: Sum_{j>=0} x^j/(1 - k^j * x)^(j+1).
For k>=1, E(x)^2 = Sum_{n>=0} T(n,k)*x^n/B_k(n) where B_k(n) = n!*k^binomial(n,2) and E(x) = Sum_{n>=0} x^n/b_k(n). - Geoffrey Critzer, Aug 21 2023
Previous Showing 31-40 of 42 results. Next