cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A372214 a(n) is equal to the n-th order Taylor polynomial (centered at 0) of G(x)^n evaluated at x = 1, where G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/(2*x).

Original entry on oeis.org

1, 4, 40, 487, 6376, 86629, 1203823, 16984678, 242274280, 3484593028, 50444222665, 734066291974, 10728052396111, 157349171819155, 2314894133906086, 34145661019248487, 504810905195542504, 7478066502444399439, 110972913533524676080, 1649407167353221551706, 24549982881130265421001
Offset: 0

Views

Author

Peter Bala, Apr 23 2024

Keywords

Comments

x*G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/2 is the o.g.f. of A047891.
The sequence satisfies the Gauss congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all primes p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all primes p >= 5 and positive integers n and k. Examples of these supercongruences are given below.
More generally, for each integer m, we conjecture that the sequence {a_m(n) : n >= 0}, defined by setting a_m(n) = the n-th order Taylor polynomial of G(x)^(m*n) evaluated at x = 1, satisfies the same supercongruences.

Examples

			n-th order Taylor polynomial of G(x)^n:
  n = 0: G(x)^0 = 1 + O(x)
  n = 1: G(x)^1 = 1 + 3*x + O(x^2)
  n = 2: G(x)^2 = 1 + 6*x + 33*x^2 + O(x^3)
  n = 3: G(x)^3 = 1 + 9*x + 63*x^2 + 414*x^3 + O(x^4)
  n = 4: G(x)^4 = 1 + 12*x + 102*x^2 + 768*x^3 + 5493*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 33 = 40, a(3) = 1 + 9 + 63 + 414 = 487 and a(4) = 1 + 12 + 102 + 768 + 5493 = 6376.
The triangle of coefficients of the n-th order Taylor polynomial of G(x)^n, n >= 0, in descending powers of x begins
                                             row sums
  n = 0 |    1                                   1
  n = 1 |    3    1                              4
  n = 2 |   33    6     1                       40
  n = 3 |  414   63     9    1                 487
  n = 4 | 5493  768   102   12   1            6376
   ...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 157349171819155 - 4 = (3^3)*(13^3)*269*9860941 == 0 (mod 13^3).
a(2*7) - a(2) = 2314894133906086 - 40 = 2*(3^4)*(7^3)*11*12119*312509 == 0 (mod 7^3).
		

Crossrefs

Programs

  • Maple
    G := x -> (1/2)*(1 - 2*x - sqrt(1 - 8*x + 4*x^2))/x:
    H := (x, n) -> series(G(x)^n, x, 41):
    seq(add(coeff(H(x, n), x, k), k = 0..n), n = 0..20);
  • Mathematica
    Table[SeriesCoefficient[(2*(1 + x)^2/(1 - x + Sqrt[1 - 6*x - 3*x^2]))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2024 *)
  • PARI
    G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/(2*x);
    a(n) = my(x='x+O('x^(n+2))); subst(Pol(Vec(G(x)^n)), 'x, 1); \\ Michel Marcus, May 07 2024

Formula

a(n) = [x^n] ( (1 + x)*G(x/(1 + x)) )^n.
O.g.f.: ( 1 + x*F'(x)/F(x) )/( 1 - x*F(x) ), where F(x) = (1/x)*Revert( x/G(x) ) = = 1 + 3*x + 21*x^2 + 192*x^3 + 2001*x^4 + ... is the o.g.f. of A219535.
Row sums of the Riordan array ( 1 + x*F'(x)/F(x), x*F(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ sqrt(1 + 17/sqrt(33)) * (59 + 11*sqrt(33))^n / (sqrt(3*Pi*n) * 2^(3*n + 3/2)). - Vaclav Kotesovec, May 02 2024

A357585 Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 32, 18, 6, 1, 0, 166, 92, 33, 8, 1, 0, 926, 509, 188, 52, 10, 1, 0, 5419, 2964, 1113, 328, 75, 12, 1, 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1, 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1
Offset: 0

Views

Author

Peter Luschny, Oct 08 2022

Keywords

Comments

Also the matrix inverse of the signed version of A105475 with 1, 0, 0, 0, ... as column 0.

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,      1;
[2] 0,      2,      1;
[3] 0,      7,      4,     1;
[4] 0,     32,     18,     6,     1;
[5] 0,    166,     92,    33,     8,    1;
[6] 0,    926,    509,   188,    52,   10,  1;
[7] 0,   5419,   2964,  1113,   328,   75,  12,   1;
[8] 0,  32816,  17890,  6792,  2078,  520, 102,  14,  1;
[9] 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1;
		

Crossrefs

Cf. A108524 (column 1), A047891 (row sums), A105475.

Programs

  • Maple
    InvPMatrix := proc(dim, seqfun) local k, m, M, A;
        if dim < 1 then return [] fi;
        A := [seq(seqfun(i), i = 1..dim-1)];
        M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1;
        for m from 2 to dim do
            M[m, m] := M[m - 1, m - 1] / A[1];
            for k from m-1 by -1 to 2 do
                M[m, k] := M[m - 1, k - 1] -
                    add(A[i+1] * M[m, k + i], i = 1..m-k) / A[1]
    od od; M end:
    InvPMatrix(10, n -> [1, -2][irem(n-1, 2) + 1]);

A379103 Expansion of (1-3*x-sqrt(9*x^2-14*x+1))/4.

Original entry on oeis.org

0, 1, 5, 35, 295, 2765, 27705, 290535, 3148995, 34995065, 396602605, 4566227435, 53259218495, 627982592965, 7473163652705, 89640387354735, 1082664905352795, 13155505626756465, 160709002086562005, 1972595405313408435, 24315686632846439895, 300886761671728853565, 3736205372071338170505, 46540791299676591116535
Offset: 0

Views

Author

Nathaniel Johnston, Dec 15 2024

Keywords

Comments

Problem A6 on the 2024 William Lowell Putnam Mathematical Competition was to compute the Hankel transform of this sequence, which is A110147.
Given constants X and Y, let A(x) = (1 - x*(X - Y) - sqrt(1 - 2*x*(X + Y) + x^2*(X - Y)^2))/(2*Y) = x*(1) + x^2*(X) + x^3*X*(X + Y) + x^4*X*(X^2 + 3*X*Y + Y^2) + ... where the coefficients of A(x) is the Narayana triangle A090181. A(x) satisfies 0 = x - A(x)*(1 - x*(X-Y)) + A(x)^2*Y. The Hankel transform of the coefficients 1, X, X*(X + Y), ... is the sequence 1, (X*Y), (X*Y)^2, ... while the Hankel transform of X, X*(X + Y), X*(X^2 + 3*X*Y + Y^2), ... is the sequence X, X^3*Y, X^6*Y^3, X^10*Y^6, .... In the case of this sequence, X = 5 and Y = 2. - Michael Somos, Apr 26 2025

Examples

			G.f. = x + 5*x^2 + 35*x^3 + 295*x^4 + 2765*x^5 + 27705*x^6 + ... - _Michael Somos_, Apr 26 2025
		

Crossrefs

Programs

  • MATLAB
    a = 3;b = 2;c(1) = 1;last_val = 16;for j = 2:last_val
    c(j) = a*c(j-1) + b*sum(c(1:j-1).*fliplr(c(1:j-1)));
    end
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 - 3*x - Sqrt[1 - 14*x + 9*x^2])/4, {x, 0, n}]; (* Michael Somos, Apr 26 2025 *)
    a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - (X-Y)*x - Y*#)&, O[x], n], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
    a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - X*x/(1 - Y*#))&, O[x], Ceiling[n/2]], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
  • PARI
    my(x='x+O('x^33)); concat([0],Vec((1-3*x-sqrt(9*x^2-14*x+1))/4)) \\ Joerg Arndt, Dec 15 2024
    
  • PARI
    a(n) = my(A = O(x)); for(k=1, n, A = x + 3*x*A + 2*A^2); polcoeff(A, n); /* Michael Somos, Apr 26 2025 */
    
  • PARI
    a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, n, A = x/(1 - (X-Y)*x - Y*A)); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */
    
  • PARI
    a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, (n+1)\2, A = x/(1 - X*x/(1 - Y*A))); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */

Formula

a(0) = 0, a(1) = 1, a(n) = 3*a(n-1) + 2*Sum_{k=0..n} a(k)*a(n-k) for n >= 2.
G.f.: (1-3*x-sqrt(9*x^2-14*x+1))/4.
G.f.: x/(1-5*x/(1-2*x/(1-5*x/(1-2*x/(1-5*x/(...)))))). - Thomas Scheuerle, Feb 28 2025
a(n) = (1/4)*(-1)^(n+1) * Sum_{k=0..n} binomial(1/2,k) * binomial(1/2,n-k) * (7+2*sqrt(10))^k * (7-2*sqrt(10))^(n-k) for n >= 2. - Ehren Metcalfe, Feb 26 2025
a(n) ~ 5^(1/4) * (7 + 2*sqrt(10))^(n - 1/2) / (2^(7/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2025
The g.f. A(x) satisfies 0 = x - (1 - 3*x)*A(x) + 2*A(x)^2 and A(x) = x + 3*x*A(x) + 2*A(x)^2. - Michael Somos, Apr 26 2025

A247507 Square array read by ascending antidiagonals, n>=0, k>=0. Row n is the expansion of (1-n*x-sqrt(n^2*x^2-2*n*x-4*x+1))/(2*x).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 22, 14, 1, 5, 20, 57, 90, 42, 1, 6, 30, 116, 300, 394, 132, 1, 7, 42, 205, 740, 1686, 1806, 429, 1, 8, 56, 330, 1530, 5028, 9912, 8558, 1430, 1, 9, 72, 497, 2814, 12130, 35700, 60213, 41586, 4862
Offset: 0

Views

Author

Peter Luschny, Nov 17 2014

Keywords

Examples

			   [0][1] [2]  [3]    [4]     [5]      [6]       [7]
[0] 1, 1,  2,   5,    14,     42,     132,      429,.. A000108
[1] 1, 2,  6,  22,    90,    394,    1806,     8558,.. A006318
[2] 1, 3, 12,  57,   300,   1686,    9912,    60213,.. A047891
[3] 1, 4, 20, 116,   740,   5028,   35700,   261780,.. A082298
[4] 1, 5, 30, 205,  1530,  12130,  100380,   857405,.. A082301
[5] 1, 6, 42, 330,  2814,  25422,  239442,  2326434,.. A082302
[6] 1, 7, 56, 497,  4760,  48174,  507696,  5516133,.. A082305
[7] 1, 8, 72, 712,  7560,  84616,  985032, 11814728,.. A082366
[8] 1, 9, 90, 981, 11430, 140058, 1782900, 23369805,.. A082367
		

Crossrefs

Cf. A243631.
Main diagonal gives A302286.

Programs

  • Maple
    gf := n -> (1-n*x-sqrt(n^2*x^2-2*n*x-4*x+1))/(2*x):
    for n from 0 to 10 do lprint(PolynomialTools:-CoefficientList( convert(series(gf(n),x,8),polynom),x)) od;

Formula

G.f. of row n: 1/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 06 2018

Extensions

Offset changed to 0 by Alois P. Heinz, May 28 2015

A346505 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^2) / (1 - x + 2 * x^2).

Original entry on oeis.org

1, 2, 4, 12, 44, 172, 700, 2940, 12652, 55500, 247260, 1115740, 5088908, 23423020, 108659324, 507520316, 2384733868, 11264884876, 53464215580, 254822253852, 1219182031820, 5853309920748, 28190437248700, 136160853462524, 659401832797676, 3201141695492172, 15575294057678428
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = (1 + x A[x]^2)/(1 - x + 2 x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + Sum[a[k] a[n - k - 1], {k, 2, n - 1}]; Table[a[n], {n, 0, 26}]
    CoefficientList[Series[(1 - x*(1 - 2*x)) * (1 - Sqrt[1 - 4*x/(-1 + x - 2*x^2)^2]) / (2*x), {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=2..n-1} a(k) * a(n-k-1).
From Vaclav Kotesovec, Sep 26 2023: (Start)
G.f.: (1 - x*(1 - 2*x))*(1 - sqrt(1 - 4*x/(-1 + x - 2*x^2)^2))/(2*x).
a(n) ~ sqrt((69 + 57*sqrt(114) + 23*3^(5/6)*sqrt(38)*(9 + 2*sqrt(114))^(1/3) - 36*3^(1/6)*sqrt(38)*(9 + 2*sqrt(114))^(2/3) + 291*(27 + 6*sqrt(114))^(1/3) - 54*(27 + 6*sqrt(114))^(2/3))/(-72 - 16*sqrt(114) + 3^(11/6)*sqrt(38)*(9 + 2*sqrt(114))^(1/3) + 3^(1/6)*sqrt(38)*(9 + 2*sqrt(114))^(2/3) + 26*(27 + 6*sqrt(114))^(1/3) - 6*(27 + 6*sqrt(114))^(2/3))) * 2^(n - 1/2) * 3^(1/6 + 4*n/3) * ((9 + 2*sqrt(114))^((1/3)*(n-1)) / (sqrt(Pi) * n^(3/2) * (-15 + (27 + 6*sqrt(114))^(2/3))^n)). (End)

A349012 G.f. A(x) satisfies: A(x) = (1 + x * A(2*x)) / (1 - x * A(x)).

Original entry on oeis.org

1, 2, 8, 52, 552, 10208, 350112, 23159760, 3012389984, 777296223040, 399542726439936, 409933997609848192, 840366306053838941952, 3443822768422065940362240, 28218687132517064788995222528, 462391421142204650963524251763968, 15152566983759983965941543133445666304
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; A[] = 0; Do[A[x] = (1 + x A[2 x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = 2^(n - 1) a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = 2^(n-1) * a(n-1) + Sum_{k=0..n-1} a(k) * a(n-k-1).
a(n) ~ c * 2^(n*(n-1)/2), where c = 11.40022022373995418911523299051117421707893086825818379118899572625286143... - Vaclav Kotesovec, Nov 06 2021

A371392 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+2*x)^3 ).

Original entry on oeis.org

1, 7, 68, 769, 9492, 124014, 1686120, 23610565, 338200148, 4932348226, 72993007672, 1093371638954, 16545598769416, 252567107648604, 3884497559034192, 60136704175071789, 936373570430169300, 14654788984834217850, 230405413840884827160, 3637362857723455772670
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+2*x)^3)/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(3*(n+1), k)*binomial(2*n-k, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(3*(n+1),k) * binomial(2*n-k,n-k).

A133366 Triangle T(n,k)read by rows given by [3,1,3,1,3,1,3,1,3,1,3,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 3, 1, 12, 7, 1, 57, 43, 11, 1, 300, 262, 90, 15, 1, 1686, 1618, 667, 153, 19, 1, 9912, 10159, 4745, 1336, 232, 23, 1, 60213, 64783, 33147, 10785, 2333, 327, 27, 1, 374988, 418786, 229726, 83286, 21098, 3722, 438, 31, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 27 2007

Keywords

Comments

A121576*A007318 as infinite lower triangular matrices.

Examples

			Triangle begins:
       1;
       3,      1;
      12,      7,      1;
      57,     43,     11,     1;
     300,    262,     90,    15,     1;
    1686,   1618,    667,   153,    19,    1;
    9912,  10159,   4745,  1336,   232,   23,   1;
   60213,  64783,  33147, 10785,  2333,  327,  27,  1;
  374988, 418786, 229786, 83286, 21098, 3722, 438, 31, 1; ...
		

Crossrefs

Formula

T(0,0)=1; T(n,k) = 0 if k < 0 or if k > n; T(n,0) = 3*T(n-1,0) + 3*T(n-1,1); T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + 3*T(n-1,k+1) for k >= 1.
Sum_{k>=0} T(m,k)*T(n,k)*3^k = T(m+n,0)= A047891(m+n+1). - Philippe Deléham, Jan 24 2010
Previous Showing 21-28 of 28 results.