A372214
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of G(x)^n evaluated at x = 1, where G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/(2*x).
Original entry on oeis.org
1, 4, 40, 487, 6376, 86629, 1203823, 16984678, 242274280, 3484593028, 50444222665, 734066291974, 10728052396111, 157349171819155, 2314894133906086, 34145661019248487, 504810905195542504, 7478066502444399439, 110972913533524676080, 1649407167353221551706, 24549982881130265421001
Offset: 0
n-th order Taylor polynomial of G(x)^n:
n = 0: G(x)^0 = 1 + O(x)
n = 1: G(x)^1 = 1 + 3*x + O(x^2)
n = 2: G(x)^2 = 1 + 6*x + 33*x^2 + O(x^3)
n = 3: G(x)^3 = 1 + 9*x + 63*x^2 + 414*x^3 + O(x^4)
n = 4: G(x)^4 = 1 + 12*x + 102*x^2 + 768*x^3 + 5493*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 33 = 40, a(3) = 1 + 9 + 63 + 414 = 487 and a(4) = 1 + 12 + 102 + 768 + 5493 = 6376.
The triangle of coefficients of the n-th order Taylor polynomial of G(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 3 1 4
n = 2 | 33 6 1 40
n = 3 | 414 63 9 1 487
n = 4 | 5493 768 102 12 1 6376
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 157349171819155 - 4 = (3^3)*(13^3)*269*9860941 == 0 (mod 13^3).
a(2*7) - a(2) = 2314894133906086 - 40 = 2*(3^4)*(7^3)*11*12119*312509 == 0 (mod 7^3).
-
G := x -> (1/2)*(1 - 2*x - sqrt(1 - 8*x + 4*x^2))/x:
H := (x, n) -> series(G(x)^n, x, 41):
seq(add(coeff(H(x, n), x, k), k = 0..n), n = 0..20);
-
Table[SeriesCoefficient[(2*(1 + x)^2/(1 - x + Sqrt[1 - 6*x - 3*x^2]))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2024 *)
-
G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/(2*x);
a(n) = my(x='x+O('x^(n+2))); subst(Pol(Vec(G(x)^n)), 'x, 1); \\ Michel Marcus, May 07 2024
A357585
Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 32, 18, 6, 1, 0, 166, 92, 33, 8, 1, 0, 926, 509, 188, 52, 10, 1, 0, 5419, 2964, 1113, 328, 75, 12, 1, 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1, 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 1;
[3] 0, 7, 4, 1;
[4] 0, 32, 18, 6, 1;
[5] 0, 166, 92, 33, 8, 1;
[6] 0, 926, 509, 188, 52, 10, 1;
[7] 0, 5419, 2964, 1113, 328, 75, 12, 1;
[8] 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1;
[9] 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1;
-
InvPMatrix := proc(dim, seqfun) local k, m, M, A;
if dim < 1 then return [] fi;
A := [seq(seqfun(i), i = 1..dim-1)];
M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1;
for m from 2 to dim do
M[m, m] := M[m - 1, m - 1] / A[1];
for k from m-1 by -1 to 2 do
M[m, k] := M[m - 1, k - 1] -
add(A[i+1] * M[m, k + i], i = 1..m-k) / A[1]
od od; M end:
InvPMatrix(10, n -> [1, -2][irem(n-1, 2) + 1]);
A379103
Expansion of (1-3*x-sqrt(9*x^2-14*x+1))/4.
Original entry on oeis.org
0, 1, 5, 35, 295, 2765, 27705, 290535, 3148995, 34995065, 396602605, 4566227435, 53259218495, 627982592965, 7473163652705, 89640387354735, 1082664905352795, 13155505626756465, 160709002086562005, 1972595405313408435, 24315686632846439895, 300886761671728853565, 3736205372071338170505, 46540791299676591116535
Offset: 0
G.f. = x + 5*x^2 + 35*x^3 + 295*x^4 + 2765*x^5 + 27705*x^6 + ... - _Michael Somos_, Apr 26 2025
-
a = 3;b = 2;c(1) = 1;last_val = 16;for j = 2:last_val
c(j) = a*c(j-1) + b*sum(c(1:j-1).*fliplr(c(1:j-1)));
end
-
a[ n_] := SeriesCoefficient[ (1 - 3*x - Sqrt[1 - 14*x + 9*x^2])/4, {x, 0, n}]; (* Michael Somos, Apr 26 2025 *)
a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - (X-Y)*x - Y*#)&, O[x], n], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - X*x/(1 - Y*#))&, O[x], Ceiling[n/2]], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
-
my(x='x+O('x^33)); concat([0],Vec((1-3*x-sqrt(9*x^2-14*x+1))/4)) \\ Joerg Arndt, Dec 15 2024
-
a(n) = my(A = O(x)); for(k=1, n, A = x + 3*x*A + 2*A^2); polcoeff(A, n); /* Michael Somos, Apr 26 2025 */
-
a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, n, A = x/(1 - (X-Y)*x - Y*A)); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */
-
a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, (n+1)\2, A = x/(1 - X*x/(1 - Y*A))); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */
A247507
Square array read by ascending antidiagonals, n>=0, k>=0. Row n is the expansion of (1-n*x-sqrt(n^2*x^2-2*n*x-4*x+1))/(2*x).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 22, 14, 1, 5, 20, 57, 90, 42, 1, 6, 30, 116, 300, 394, 132, 1, 7, 42, 205, 740, 1686, 1806, 429, 1, 8, 56, 330, 1530, 5028, 9912, 8558, 1430, 1, 9, 72, 497, 2814, 12130, 35700, 60213, 41586, 4862
Offset: 0
[0][1] [2] [3] [4] [5] [6] [7]
[0] 1, 1, 2, 5, 14, 42, 132, 429,.. A000108
[1] 1, 2, 6, 22, 90, 394, 1806, 8558,.. A006318
[2] 1, 3, 12, 57, 300, 1686, 9912, 60213,.. A047891
[3] 1, 4, 20, 116, 740, 5028, 35700, 261780,.. A082298
[4] 1, 5, 30, 205, 1530, 12130, 100380, 857405,.. A082301
[5] 1, 6, 42, 330, 2814, 25422, 239442, 2326434,.. A082302
[6] 1, 7, 56, 497, 4760, 48174, 507696, 5516133,.. A082305
[7] 1, 8, 72, 712, 7560, 84616, 985032, 11814728,.. A082366
[8] 1, 9, 90, 981, 11430, 140058, 1782900, 23369805,.. A082367
-
gf := n -> (1-n*x-sqrt(n^2*x^2-2*n*x-4*x+1))/(2*x):
for n from 0 to 10 do lprint(PolynomialTools:-CoefficientList( convert(series(gf(n),x,8),polynom),x)) od;
A346505
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^2) / (1 - x + 2 * x^2).
Original entry on oeis.org
1, 2, 4, 12, 44, 172, 700, 2940, 12652, 55500, 247260, 1115740, 5088908, 23423020, 108659324, 507520316, 2384733868, 11264884876, 53464215580, 254822253852, 1219182031820, 5853309920748, 28190437248700, 136160853462524, 659401832797676, 3201141695492172, 15575294057678428
Offset: 0
-
nmax = 26; A[] = 0; Do[A[x] = (1 + x A[x]^2)/(1 - x + 2 x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + Sum[a[k] a[n - k - 1], {k, 2, n - 1}]; Table[a[n], {n, 0, 26}]
CoefficientList[Series[(1 - x*(1 - 2*x)) * (1 - Sqrt[1 - 4*x/(-1 + x - 2*x^2)^2]) / (2*x), {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 26 2023 *)
A349012
G.f. A(x) satisfies: A(x) = (1 + x * A(2*x)) / (1 - x * A(x)).
Original entry on oeis.org
1, 2, 8, 52, 552, 10208, 350112, 23159760, 3012389984, 777296223040, 399542726439936, 409933997609848192, 840366306053838941952, 3443822768422065940362240, 28218687132517064788995222528, 462391421142204650963524251763968, 15152566983759983965941543133445666304
Offset: 0
-
nmax = 16; A[] = 0; Do[A[x] = (1 + x A[2 x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = 2^(n - 1) a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
A371392
Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+2*x)^3 ).
Original entry on oeis.org
1, 7, 68, 769, 9492, 124014, 1686120, 23610565, 338200148, 4932348226, 72993007672, 1093371638954, 16545598769416, 252567107648604, 3884497559034192, 60136704175071789, 936373570430169300, 14654788984834217850, 230405413840884827160, 3637362857723455772670
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+2*x)^3)/x)
-
a(n) = sum(k=0, n, 2^k*binomial(3*(n+1), k)*binomial(2*n-k, n-k))/(n+1);
A133366
Triangle T(n,k)read by rows given by [3,1,3,1,3,1,3,1,3,1,3,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 3, 1, 12, 7, 1, 57, 43, 11, 1, 300, 262, 90, 15, 1, 1686, 1618, 667, 153, 19, 1, 9912, 10159, 4745, 1336, 232, 23, 1, 60213, 64783, 33147, 10785, 2333, 327, 27, 1, 374988, 418786, 229726, 83286, 21098, 3722, 438, 31, 1
Offset: 0
Triangle begins:
1;
3, 1;
12, 7, 1;
57, 43, 11, 1;
300, 262, 90, 15, 1;
1686, 1618, 667, 153, 19, 1;
9912, 10159, 4745, 1336, 232, 23, 1;
60213, 64783, 33147, 10785, 2333, 327, 27, 1;
374988, 418786, 229786, 83286, 21098, 3722, 438, 31, 1; ...
Comments