cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A365068 Number of integer partitions of n with some part that can be written as a nonnegative linear combination of the other distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 10, 16, 23, 34, 44, 67, 85, 119, 157, 210, 268, 360, 453, 592, 748, 956, 1195, 1520, 1883, 2365, 2920, 3628, 4451, 5494, 6702, 8211, 9976, 12147, 14666, 17776, 21389, 25774, 30887, 37035, 44224, 52819, 62836, 74753, 88614, 105062, 124160
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

These may be called "non-binary nonnegative combination-full" partitions.
Does not necessarily include all non-strict partitions (A047967).

Examples

			The partition (5,4,3,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(15).
The partition (6,4,3,2) has 6 = 1*2 + 1*4, so is counted under a(15). The combinations 6 = 2*3 = 3*2 and 4 = 2*2 can also be used.
The a(3) = 1 through a(8) = 16 partitions:
  (21)  (31)   (41)    (42)     (61)      (62)
        (211)  (221)   (51)     (331)     (71)
               (311)   (321)    (421)     (422)
               (2111)  (411)    (511)     (431)
                       (2211)   (2221)    (521)
                       (3111)   (3211)    (611)
                       (21111)  (4111)    (3221)
                                (22111)   (3311)
                                (31111)   (4211)
                                (211111)  (5111)
                                          (22211)
                                          (32111)
                                          (41111)
                                          (221111)
                                          (311111)
                                          (2111111)
		

Crossrefs

The complement for sums instead of combinations is A237667, binary A236912.
For sums instead of combinations we have A237668, binary A237113.
The strict case is A364839, complement A364350.
Allowing equal parts in the combination gives A364913.
For subsets instead of partitions we have A364914, complement A326083.
The complement is A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A323092 counts double-free partitions, ranks A320340.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,Or@@Table[combs[ptn[[k]], DeleteCases[ptn,ptn[[k]]]]!={}, {k,Length[ptn]}]]]],{n,0,5}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365068(n):
        if n <= 1: return 0
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0
        for p in partitions(n,k=n-1):
            s = set(p)
            if any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(47) from Chai Wah Wu, Sep 20 2023

A366852 Number of integer partitions of n into odd parts with a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 4, 0, 1, 4, 1, 2, 6, 1, 1, 6, 3, 1, 8, 2, 1, 13, 1, 0, 13, 1, 7, 15, 1, 1, 19, 6, 1, 25, 1, 2, 33, 1, 1, 32, 5, 10, 39, 2, 1, 46, 14, 6, 55, 1, 1, 77, 1, 1, 82, 0, 20, 92, 1, 2, 105, 31, 1, 122, 1, 1, 166, 2, 16, 168
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Examples

			The a(n) partitions for n = 3, 9, 15, 21, 25, 27:
(3)  (9)      (15)         (21)             (25)         (27)
     (3,3,3)  (5,5,5)      (7,7,7)          (15,5,5)     (9,9,9)
              (9,3,3)      (9,9,3)          (5,5,5,5,5)  (15,9,3)
              (3,3,3,3,3)  (15,3,3)                      (21,3,3)
                           (9,3,3,3,3)                   (9,9,3,3,3)
                           (3,3,3,3,3,3,3)               (15,3,3,3,3)
                                                         (9,3,3,3,3,3,3)
                                                         (3,3,3,3,3,3,3,3,3)
		

Crossrefs

Allowing even parts gives A018783, complement A000837.
For parts > 1 instead of gcd > 1 we have A087897.
For gcd = 1 instead of gcd > 1 we have A366843.
The strict case is A366750, with evens A303280.
The strict complement is A366844, with evens A078374.
A000041 counts integer partitions, strict A000009 (also into odd parts).
A000700 counts strict partitions into odd parts.
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A168532 counts partitions by gcd.
A366842 counts partitions whose odd parts have a common divisor > 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@OddQ/@#&&GCD@@#>1&]],{n,15}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366852(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)>1) # Chai Wah Wu, Nov 02 2023

Extensions

More terms from Chai Wah Wu, Nov 02 2023
a(0)=0 prepended by Alois P. Heinz, Jan 11 2024

A239214 a(n) = |{0 < k < n: p(k)*p(n)*(p(n)+1) - 1 is prime}|, where p(.) is the partition function (A000041).

Original entry on oeis.org

0, 1, 2, 3, 1, 3, 3, 2, 3, 3, 5, 4, 4, 3, 3, 6, 2, 4, 5, 4, 1, 2, 3, 6, 6, 6, 2, 4, 6, 9, 2, 7, 8, 6, 6, 2, 2, 2, 10, 4, 4, 7, 5, 7, 1, 4, 9, 9, 9, 4, 6, 8, 7, 8, 6, 4, 13, 10, 3, 6, 10, 7, 13, 12, 12, 8, 6, 8, 5, 11, 5, 3, 4, 5, 11, 7, 6, 12, 16, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 12 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1.
(ii) For each n = 2, 3, ... there is a positive integer k < n with p(k)*p(n)*(p(n)-1) + 1 prime. If n > 2, then p(k)*p(n)*(p(n)-1)-1 is prime for some 0 < k < n.
(iii) For any n > 1, there is a positive integer k < n with 2*p(k)*p(n)*A000009(n)*A047967(n) + 1 prime.
We have verified that a(n) > 0 for all n = 2, ..., 10^5.

Examples

			a(2) = 1 since p(1)*p(2)*(p(2)+1) - 1 = 1*2*3 - 1 = 5 is prime.
a(5) = 1 since p(3)*p(5)*(p(5)+1) - 1 = 3*7*8 - 1 = 167 is prime.
a(21) = 1 since p(10)*p(21)*(p(21)+1) - 1 = 42*792*793 - 1 = 26378351 is prime.
a(45) = 1 since p(20)*p(45)*(p(45)+1) - 1 = 627*89134*89135 - 1 = 4981489349429 is prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PartitionsP[n]
    f[n_]:=p[n]*(p[n]+1)
    a[n_]:=Sum[If[PrimeQ[p[k]*f[n]-1],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]

A295341 The number of partitions of n in which at least one part is a multiple of 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 6, 9, 14, 20, 29, 41, 57, 78, 106, 142, 189, 250, 327, 425, 549, 705, 900, 1144, 1445, 1819, 2279, 2844, 3534, 4379, 5403, 6648, 8152, 9969, 12152, 14780, 17920, 21682, 26163, 31504, 37842, 45371, 54270, 64800, 77211, 91842, 109031, 129235, 152897
Offset: 0

Views

Author

R. J. Mathar, Nov 20 2017

Keywords

Comments

From Gus Wiseman, May 23 2022: (Start)
Also the number of integer partitions of n with at least one part appearing more than twice. The Heinz numbers of these partitions are given by A046099. For example, the a(0) = 0 though a(8) = 9 partitions are:
. . . (111) (1111) (2111) (222) (2221) (2222)
(11111) (3111) (4111) (5111)
(21111) (22111) (22211)
(111111) (31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			From _Gus Wiseman_, May 23 2022: (Start)
The a(0) = 0 through a(8) = 9 partitions with a part that is a multiple of 3:
  .  .  .  (3)  (31)  (32)   (6)     (43)     (53)
                      (311)  (33)    (61)     (62)
                             (321)   (322)    (332)
                             (3111)  (331)    (431)
                                     (3211)   (611)
                                     (31111)  (3221)
                                              (3311)
                                              (32111)
                                              (311111)
(End)
		

Crossrefs

The complement is counted by A000726, ranked by A004709.
These partitions are ranked by A354235.
This is column k = 3 of A354234.
For 2 instead of 3 we have A047967, ranked by A013929 and A324929.
For 4 instead of 3 we have A295342, ranked by A046101.
A000041 counts integer partitions, strict A000009.
A046099 lists non-cubefree numbers.

Programs

Formula

a(n) = A000041(n)-A000726(n).

A320264 Number T(n,k) of proper multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=2, 1<=k<=n-1, read by rows.

Original entry on oeis.org

1, 1, 2, 3, 11, 9, 4, 38, 84, 52, 7, 125, 523, 766, 365, 10, 364, 2676, 7096, 7775, 3006, 16, 1041, 12435, 52955, 100455, 87261, 28357, 22, 2838, 54034, 348696, 1020805, 1497038, 1074766, 301064, 32, 7645, 225417, 2120284, 8995801, 19823964, 23605043, 14423564, 3549177
Offset: 2

Views

Author

Alois P. Heinz, Oct 08 2018

Keywords

Examples

			T(2,1) = 1: {a,a}.
T(3,2) = 2: {a,a,b}, {a,b,b}.
T(4,3) = 9: {a,a,b,c}, {a,a,bc}, {a,a,cb}, {b,b,a,c}, {b,b,ac}, {b,b,ca}, {c,c,a,b}, {c,c,ab}, {c,c,ba}.
Triangle T(n,k) begins:
  .
  .   .
  .   1,    .
  .   1,    2,     .
  .   3,   11,     9,      .
  .   4,   38,    84,     52,       .
  .   7,  125,   523,    766,     365,       .
  .  10,  364,  2676,   7096,    7775,    3006,       .
  .  16, 1041, 12435,  52955,  100455,   87261,   28357,      .
  .  22, 2838, 54034, 348696, 1020805, 1497038, 1074766, 301064,   .
		

Crossrefs

Column k=1 gives A047967.
Row sums give A320265.
T(n+1,n) gives A006152.

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
        end:
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    T:= (n, k)-> add((-1)^i*(g(n, k-i)-h(n$2, k-i))*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=1..n-1), n=2..12);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i<1, 0,
         Sum[h[n - i*j, i-1, k]*Binomial[k^i, j], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[Sum[
         d*k^d, {d, Divisors[j]}]*g[n - j, k], {j, 1, n}]/n];
    T[n_, k_] := Sum[(-1)^i*(g[n, k-i]-h[n, n, k-i])*Binomial[k, i], {i, 0, k}];
    Table[Table[T[n, k], {k, 1, n - 1}], {n, 2, 12}] // Flatten (* Jean-François Alcover, Feb 13 2021, after Alois P. Heinz *)

Formula

T(n,k) = A257740(n,k) - A319501(n,k).

A354234 Triangle read by rows where T(n,k) is the number of integer partitions of n with at least one part divisible by k.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 3, 1, 1, 7, 4, 2, 1, 1, 11, 7, 4, 2, 1, 1, 15, 10, 6, 3, 2, 1, 1, 22, 16, 9, 6, 3, 2, 1, 1, 30, 22, 14, 8, 5, 3, 2, 1, 1, 42, 32, 20, 13, 8, 5, 3, 2, 1, 1, 56, 44, 29, 18, 12, 7, 5, 3, 2, 1, 1, 77, 62, 41, 27, 17, 12, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 22 2022

Keywords

Comments

Also partitions of n with at least one part appearing k or more times. It would be interesting to have a bijective proof of this.

Examples

			Triangle begins:
   1
   2  1
   3  1  1
   5  3  1  1
   7  4  2  1  1
  11  7  4  2  1  1
  15 10  6  3  2  1  1
  22 16  9  6  3  2  1  1
  30 22 14  8  5  3  2  1  1
  42 32 20 13  8  5  3  2  1  1
  56 44 29 18 12  7  5  3  2  1  1
  77 62 41 27 17 12  7  5  3  2  1  1
For example, row n = 5 counts the following partitions:
  (5)      (32)    (32)   (41)  (5)
  (32)     (41)    (311)
  (41)     (221)
  (221)    (2111)
  (311)
  (2111)
  (11111)
At least one part appearing k or more times:
  (5)      (221)    (2111)   (11111)  (11111)
  (32)     (311)    (11111)
  (41)     (2111)
  (221)    (11111)
  (311)
  (2111)
  (11111)
		

Crossrefs

The complement is counted by A061199.
Differences of consecutive terms are A091602.
Column k = 1 is A000041.
Column k = 2 is A047967, ranked by A013929 and A324929.
Column k = 3 is A295341, ranked by A046099 and A354235.
Column k = 4 is A295342.
A000041 counts integer partitions, strict A000009.
A047966 counts uniform partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[#/k,_?IntegerQ]&]],{n,1,15},{k,1,n}]
    - or -
    Table[Length[Select[IntegerPartitions[n],Max@@Length/@Split[#]>=k&]],{n,1,15},{k,1,n}]
  • PARI
    \\ here P(k,n) is partitions with no part divisible by k as g.f.
    P(k,n)={1/prod(i=1, n, 1 - if(i%k, x^i) + O(x*x^n))}
    M(n,m=n)={my(p=P(n+1,n)); Mat(vector(m, k, Col(p-P(k,n), -n) ))}
    { my(A=M(12)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Jan 19 2023

A366321 Numbers m whose prime indices have even sum k such that k/2 is not a prime index of m.

Original entry on oeis.org

1, 3, 7, 10, 13, 16, 19, 21, 22, 27, 28, 29, 34, 36, 37, 39, 43, 46, 48, 52, 53, 55, 57, 61, 62, 64, 66, 71, 75, 76, 79, 81, 82, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 113, 115, 116, 117, 118, 120, 129, 130, 131, 133, 134, 136, 138, 139, 144
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 84 are y = {1,1,2,4}, with even sum 8; but 8/2 = 4 is in y, so 84 is not in the sequence.
The terms together with their prime indices begin:
    1: {}
    3: {2}
    7: {4}
   10: {1,3}
   13: {6}
   16: {1,1,1,1}
   19: {8}
   21: {2,4}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   34: {1,7}
   36: {1,1,2,2}
		

Crossrefs

Partitions of this type are counted by A182616, strict A365828.
A066207 lists numbers with all even prime indices, odd A066208.
A086543 lists numbers with at least one odd prime index, counted by A366322.
A300063 ranks partitions of odd numbers.
A366319 ranks partitions of n not containing n/2.
A366321 ranks partitions of 2k that do not contain k.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&FreeQ[prix[#],Total[prix[#]]/2]&]

A366530 Heinz numbers of integer partitions of even numbers with at least one odd part.

Original entry on oeis.org

4, 10, 12, 16, 22, 25, 28, 30, 34, 36, 40, 46, 48, 52, 55, 62, 64, 66, 70, 75, 76, 82, 84, 85, 88, 90, 94, 100, 102, 108, 112, 115, 116, 118, 120, 121, 130, 134, 136, 138, 144, 146, 148, 154, 155, 156, 160, 165, 166, 172, 175, 184, 186, 187, 190, 192, 194, 196
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices are the following. Each multiset has even sum and at least one odd part.
    4: {1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   22: {1,5}
   25: {3,3}
   28: {1,1,4}
   30: {1,2,3}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   46: {1,9}
   48: {1,1,1,1,2}
   52: {1,1,6}
   55: {3,5}
   62: {1,11}
   64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A182616, even bisection of A086543.
Not requiring at least one odd part gives A300061.
Allowing partitions of odd numbers gives A366322.
A031368 lists primes of odd index.
A066207 ranks partitions with all even parts, counted by A035363.
A066208 ranks partitions with all odd parts, counted by A000009.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], EvenQ[Total[prix[#]]]&&Or@@OddQ/@prix[#]&]

A167930 Number of partitions of n in which some but not all parts are equal.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 4, 9, 13, 20, 29, 43, 57, 82, 110, 146, 195, 258, 334, 435, 558, 713, 910, 1150, 1446, 1814, 2268, 2815, 3491, 4308, 5301, 6501, 7954, 9692, 11795, 14295, 17301, 20876, 25148, 30200, 36218, 43322, 51741, 61650, 73354
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2009

Keywords

Comments

The parts may not all be equal, and at least one part must occur at least twice. - N. J. A. Sloane, May 30 2024

Examples

			The partitions of 6 are:
6 ....................... All parts are distinct.
5 + 1 ................... All parts are distinct.
4 + 2 ................... All parts are distinct.
4 + 1 + 1 ............... Only some parts are equal ...... (1).
3 + 3 ................... All parts are equal.
3 + 2 + 1 ............... All parts are distinct.
3 + 1 + 1 + 1 ........... Only some parts are equal ...... (2).
2 + 2 + 2 ............... All parts are equal.
2 + 2 + 1 + 1 ........... Only some parts are equal ...... (3).
2 + 1 + 1 + 1 + 1 ....... Only some parts are equal ...... (4).
1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal.
Then a(6) = 4.
a(7) = 9 from 511  4111  331  322  3211  31111  2221  22111  211111. - _N. J. A. Sloane_, May 30 2024
		

Crossrefs

Programs

  • Mathematica
    f[lst_]:=With[{c=Split[lst]},Length[lst]>2&&Max[Length/@c]>1&&Length[c]>1]; Table[Length[ Select[ IntegerPartitions[n],f]],{n,0,50}] (* Harvey P. Dale, May 30 2024 *)

Formula

a(n) = A047967(n) - A032741(n).
a(n) = A000041(n) - A000009(n) - A032741(n).
a(0) = 0: For n>0, a(n) = A000041(n) - A000009(n) - A000005(n) + 1.

Extensions

Edited by Omar E. Pol, Nov 16 2009
More terms from Max Alekseyev, May 02 2011

A167932 Number of partitions of n such that all parts are equal or all parts are distinct.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 6, 9, 10, 13, 13, 20, 19, 25, 30, 36, 39, 51, 55, 69, 79, 92, 105, 129, 144, 168, 195, 227, 257, 303, 341, 395, 451, 515, 588, 676, 761, 867, 985, 1120, 1261, 1433, 1611, 1821, 2053, 2307, 2591, 2919, 3266, 3663, 4100, 4587, 5121, 5725, 6381
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2009

Keywords

Comments

Note that for positive integers the number of partitions of n such that all parts are equal is equal to the number of proper divisors of n. (A032741(n)).

Examples

			The partitions of 6 are:
6 .............. All parts are distinct ..... (1).
5+1 ............ All parts are distinct ..... (2).
4+2 ............ All parts are distinct ..... (3).
4+1+1 .......... Only some parts are equal.
3+3 ............ All parts are equal ........ (4).
3+2+1 .......... All parts are distinct ..... (5).
3+1+1+1 ........ Only some parts are equal.
2+2+2 .......... All parts are equal ........ (6).
2+2+1+1 ........ Only some parts are equal.
2+1+1+1+1 ...... Only some parts are equal.
1+1+1+1+1+1 .... All parts are equal ........ (7).
So a(6) = 7.
		

Crossrefs

Programs

Formula

a(n) = A000041(n) - A167930(n).
a(n) = A000009(n) + A032741(n).

Extensions

More terms from D. S. McNeil, May 10 2010
Previous Showing 41-50 of 61 results. Next