cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A007713 Number of 4-level rooted trees with n leaves.

Original entry on oeis.org

1, 1, 4, 10, 30, 75, 206, 518, 1344, 3357, 8429, 20759, 51044, 123973, 299848, 719197, 1716563, 4070800, 9607797, 22555988, 52718749, 122655485, 284207304, 655894527, 1508046031, 3454808143, 7887768997, 17949709753, 40719611684, 92096461012, 207697731344
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Oct 11 2018: (Start)
Also the number of multiset partitions of multiset partitions of integer partitions of n. For example, the a(1) = 1 through a(4) = 30 multiset partitions are:
  ((1))  ((2))       ((3))            ((4))
         ((11))      ((12))           ((13))
         ((1)(1))    ((111))          ((22))
         ((1))((1))  ((1)(2))         ((112))
                     ((1)(11))        ((1111))
                     ((1))((2))       ((1)(3))
                     ((1))((11))      ((2)(2))
                     ((1)(1)(1))      ((1)(12))
                     ((1))((1)(1))    ((2)(11))
                     ((1))((1))((1))  ((1)(111))
                                      ((11)(11))
                                      ((1))((3))
                                      ((2))((2))
                                      ((1))((12))
                                      ((1)(1)(2))
                                      ((2))((11))
                                      ((1))((111))
                                      ((1)(1)(11))
                                      ((11))((11))
                                      ((1))((1)(2))
                                      ((2))((1)(1))
                                      ((1))((1)(11))
                                      ((1)(1)(1)(1))
                                      ((11))((1)(1))
                                      ((1))((1))((2))
                                      ((1))((1))((11))
                                      ((1))((1)(1)(1))
                                      ((1)(1))((1)(1))
                                      ((1))((1))((1)(1))
                                      ((1))((1))((1))((1))
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b0:= etr(1): b1:= etr(b0): a:= etr(b1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b0 = etr[Function[1]]; b1 = etr[b0]; a = etr[b1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)

Formula

Euler transform applied thrice to all-1's sequence.

A168021 Triangle T(n,k) read by rows in which row n lists the number of partitions of n into parts divisible by k.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 5, 2, 0, 1, 7, 0, 0, 0, 1, 11, 3, 2, 0, 0, 1, 15, 0, 0, 0, 0, 0, 1, 22, 5, 0, 2, 0, 0, 0, 1, 30, 0, 3, 0, 0, 0, 0, 0, 1, 42, 7, 0, 0, 2, 0, 0, 0, 0, 1, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2009, Nov 21 2009

Keywords

Comments

The row-reversed version is A168016.
Also see A168020.

Examples

			Triangle begins:
==============================================
...... k: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12
==============================================
n=1 ..... 1,
n=2 ..... 2, 1,
n=3 ..... 3, 0, 1,
n=4 ..... 5, 2, 0, 1,
n=5 ..... 7, 0, 0, 0, 1,
n=6 .... 11, 3, 2, 0, 0, 1,
n=7 .... 15, 0, 0, 0, 0, 0, 1,
n=8 .... 22, 5, 0, 2, 0, 0, 0, 1,
n=9 .... 30, 0, 3, 0, 0, 0, 0, 0, 1,
n=10 ... 42, 7, 0, 0, 2, 0, 0, 0, 0, 1,
n=11 ... 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
n=12 ... 77,11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[n/k], PartitionsP[n/k], 0];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    def A168021(n,k): return number_of_partitions(n/k) if (n%k)==0 else 0
    flatten([[A168021(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023

Formula

T(n,k) = A000041(n/k) if k|n, else T(n,k)=0.
Sum_{k=1..n} T(n, k) = A047968(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = 2*A000012(n).
T(2*n-1, n+1) = A000007(n-2). (End)

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A320328 Number of square multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 20, 36, 65, 117, 214, 382, 679
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Comments

A multiset partition is square if its length is equal to its number of distinct atoms.

Examples

			The a(1) = 1 through a(6) = 20 square partitions:
  {{1}}  {{2}}    {{3}}      {{4}}        {{5}}          {{6}}
         {{1,1}}  {{1,1,1}}  {{2,2}}      {{1},{4}}      {{3,3}}
                  {{1},{2}}  {{1},{3}}    {{2},{3}}      {{1},{5}}
                             {{1,1,1,1}}  {{1},{1,3}}    {{2,2,2}}
                             {{1},{1,2}}  {{1},{2,2}}    {{2},{4}}
                             {{2},{1,1}}  {{2},{1,2}}    {{1},{1,4}}
                                          {{3},{1,1}}    {{4},{1,1}}
                                          {{1,1,1,1,1}}  {{1},{1,1,3}}
                                          {{1},{1,1,2}}  {{1,1},{1,3}}
                                          {{1,1},{1,2}}  {{1},{1,2,2}}
                                          {{2},{1,1,1}}  {{1,1},{2,2}}
                                                         {{1,2},{1,2}}
                                                         {{1},{2},{3}}
                                                         {{2},{1,1,2}}
                                                         {{3},{1,1,1}}
                                                         {{1,1,1,1,1,1}}
                                                         {{1},{1,1,1,2}}
                                                         {{1,1},{1,1,2}}
                                                         {{1,2},{1,1,1}}
                                                         {{2},{1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],Length[#]==Length[Union@@#]&]],{n,8}]

A295924 Number of twice-factorizations of n of type (R,P,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 8, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is the number of ways to choose an integer partition of a divisor of A052409(n).

Examples

			The a(16) = 8 twice-factorizations are (2)*(2)*(2)*(2), (2)*(2)*(2*2), (2)*(2*2*2), (2*2)*(2*2), (2*2*2*2), (4)*(4), (4*4), (16).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsP],{n,100}]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A295924(n) = if(1==n,n,sumdiv(A052409(n),d,numbpart(d))); \\ Antti Karttunen, Jul 29 2018

Formula

a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000041(d). - Antti Karttunen, Jul 29 2018

Extensions

More terms from Antti Karttunen, Jul 29 2018

A168016 Triangle T(n,k) read by rows in which row n list the number of partitions of n into parts divisible by k for k=n,n-1,...,1.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 0, 2, 5, 1, 0, 0, 0, 7, 1, 0, 0, 2, 3, 11, 1, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 2, 0, 5, 22, 1, 0, 0, 0, 0, 0, 3, 0, 30, 1, 0, 0, 0, 0, 2, 0, 0, 7, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101
Offset: 1

Views

Author

Omar E. Pol, Nov 21 2009

Keywords

Examples

			Triangle begins:
==============================================
.... k: 12 11 10. 9. 8. 7. 6. 5. 4. 3.. 2.. 1.
==============================================
n=1 ....................................... 1,
n=2 ................................... 1,  2,
n=3 ............................... 1,  0,  3,
n=4 ............................ 1, 0,  2,  5,
n=5 ......................... 1, 0, 0,  0,  7,
n=6 ...................... 1, 0, 0, 2,  3, 11,
n=7 ................... 1, 0, 0, 0, 0,  0, 15,
n=8 ................ 1, 0, 0, 0, 2, 0,  5, 22,
n=9 ............. 1, 0, 0, 0, 0, 0, 3,  0, 30,
n=10 ......... 1, 0, 0, 0, 0, 2, 0, 0,  7, 42,
n=11 ...... 1, 0, 0, 0, 0, 0, 0, 0, 0,  0, 56,
n=12 ... 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[n/(n-k+1)], PartitionsP[n/(n-k+1)], 0];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    def T(n,k): return number_of_partitions(n/(n-k+1)) if (n%(n-k+1))==0 else 0
    flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023

Formula

T(n, k) = A000041(n/k) if k|n; otherwise T(n,k) = 0.
T(n, n) = A000041(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = A000007(n-1).
Sum_{k=1..n} T(n, k) = A047968(n).
Sum_{k=2..n-1} T(n, k) = A168111(n-1). (End)

Extensions

Edited and extended by Max Alekseyev, May 07 2010

A168017 Triangle read by rows in which row n lists the number of partitions of n into parts divisible by d, where d is a divisor of n listed in decreasing order.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 5, 1, 7, 1, 2, 3, 11, 1, 15, 1, 2, 5, 22, 1, 3, 30, 1, 2, 7, 42, 1, 56, 1, 2, 3, 5, 11, 77, 1, 101, 1, 2, 15, 135, 1, 3, 7, 176, 1, 2, 5, 22, 231, 1, 297, 1, 2, 3, 11, 30, 385, 1, 490, 1, 2, 5, 7, 42, 627, 1, 3, 15, 792, 1, 2, 56, 1002
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Positive values of triangle A168016.
The number of terms of row n is equal to the number of divisors of n: A000005(n).
Note that the last term of each row is the number of partitions of n: A000041(n).
Also, it appears that row n lists the partition numbers of the divisors of n. [Omar E. Pol, Nov 23 2009]

Examples

			Consider row n=8: (1, 2, 5, 22). The divisors of 8 listed in decreasing order are 8, 4, 2, 1 (see A056538). There is 1 partition of 8 into parts divisible by 8. Also, there are 2 partitions of 8 into parts divisible by 4: {(8), (4+4)}; 5 partitions of 8 into parts divisible by 2: {(8), (6+2), (4+4), (4+2+2), (2+2+2+2)}; and 22 partitions of 8 into parts divisible by 1, because A000041(8)=22. Then row 8 is formed by 1, 2, 5, 22.
Triangle begins:
1;
1,  2;
1,  3;
1,  2,  5;
1,  7;
1,  2,  3, 11;
1, 15;
1,  2,  5, 22;
1,  3, 30;
1,  2,  7, 42;
1, 56;
1,  2,  3,  5, 11, 77;
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, d) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n, i-d, d) +b(n-i, i, d)
          fi
        end:
    T:= proc(n) local l;
          l:= sort([divisors(n)[]],`>`);
          seq(b(n, n, l[i]), i=1..nops(l))
        end:
    seq(T(n), n=1..30); # Alois P. Heinz, Oct 21 2011
  • Mathematica
    b[n_, i_, d_] := b[n, i, d] = Which[n<0, 0, n==0, 1, i<1, 0, True, b[n, i - d, d] + b[n-i, i, d]]; T[n_] := Module[{l = Divisors[n] // Reverse}, Table[b[n, n, l[[i]]], {i, 1, Length[l]}]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)

A302593 Numbers whose prime indices are powers of a common prime number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 64, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
25: {{2},{2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
31: {{5}}
32: {{},{},{},{},{}}
34: {{},{4}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
40: {{},{},{},{2}}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,q;
      uses numtheory;
      F:= map(pi, factorset(n));
      nops(`union`(op(map(factorset,F)))) <= 1
    end proc:
    select(filter, [$1..200]); # Robert Israel, Oct 22 2020
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Join@@primeMS/@primeMS[#]&]

A320330 Number of T_0 multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 13, 25, 50, 100, 195, 366, 707, 1333, 2440
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict.

Examples

			The a(1) = 1 through a(5) = 25 multiset partitions:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,1,1}}      {{2,2}}            {{1,1,3}}
         {{1},{1}}  {{1},{2}}      {{1,1,2}}          {{1,2,2}}
                    {{1},{1,1}}    {{1},{3}}          {{1},{4}}
                    {{1},{1},{1}}  {{2},{2}}          {{2},{3}}
                                   {{1,1,1,1}}        {{1,1,1,2}}
                                   {{1},{1,2}}        {{1},{1,3}}
                                   {{2},{1,1}}        {{1},{2,2}}
                                   {{1},{1,1,1}}      {{2},{1,2}}
                                   {{1,1},{1,1}}      {{3},{1,1}}
                                   {{1},{1},{2}}      {{1,1,1,1,1}}
                                   {{1},{1},{1,1}}    {{1},{1,1,2}}
                                   {{1},{1},{1},{1}}  {{1,1},{1,2}}
                                                      {{1},{1},{3}}
                                                      {{1},{2},{2}}
                                                      {{2},{1,1,1}}
                                                      {{1},{1,1,1,1}}
                                                      {{1,1},{1,1,1}}
                                                      {{1},{1},{1,2}}
                                                      {{1},{2},{1,1}}
                                                      {{1},{1},{1,1,1}}
                                                      {{1},{1,1},{1,1}}
                                                      {{1},{1},{1},{2}}
                                                      {{1},{1},{1},{1,1}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@dual[#]&]],{n,8}]

A323774 Number of multiset partitions, whose parts are constant and all have the same sum, of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 3, 7, 3, 12, 3, 16, 8, 14, 3, 39, 3, 16, 15, 40, 3, 50, 3, 54, 17, 20, 3, 135, 10, 22, 25, 73, 3, 129, 3, 119, 21, 26, 19, 273, 3, 28, 23, 217, 3, 203, 3, 123, 74, 32, 3, 590, 12, 106, 27, 154, 3, 370, 23, 343, 29, 38, 3, 963, 3, 40, 95, 450, 25, 467, 3
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

An unlabeled version of A279789.

Examples

			The a(1) = 1 through a(6) = 12 multiset partitions:
  (1)  (2)     (3)        (4)           (5)              (6)
       (11)    (111)      (22)          (11111)          (33)
       (1)(1)  (1)(1)(1)  (1111)        (1)(1)(1)(1)(1)  (222)
                          (2)(2)                         (3)(3)
                          (2)(11)                        (111111)
                          (11)(11)                       (3)(111)
                          (1)(1)(1)(1)                   (2)(2)(2)
                                                         (111)(111)
                                                         (2)(2)(11)
                                                         (2)(11)(11)
                                                         (11)(11)(11)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

Cf. A001970, A006171 (constant parts), A007716, A034729, A047966 (uniform partitions), A047968, A279787, A279789 (twice-partitions version), A305551 (equal part-sums), A306017, A319056, A323766, A323775, A323776.

Programs

  • Mathematica
    Table[Length[Join@@Table[Union[Sort/@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@ptn]],{ptn,Select[IntegerPartitions[n],SameQ@@#&]}]],{n,30}]
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, binomial(numdiv(d) + n/d - 1, n/d))); \\ Michel Marcus, Jan 28 2019

Formula

a(0) = 1; a(n) = Sum_{d|n} binomial(tau(d) + n/d - 1, n/d), where tau = A000005.

A168018 Triangle read by rows in which row n lists the number of partitions of n into parts divisible by d, where d is a divisor of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 2, 1, 7, 1, 11, 3, 2, 1, 15, 1, 22, 5, 2, 1, 30, 3, 1, 42, 7, 2, 1, 56, 1, 77, 11, 5, 3, 2, 1, 101, 1, 135, 15, 2, 1, 176, 7, 3, 1, 231, 22, 5, 2, 1, 297, 1, 385, 30, 11, 3, 2, 1, 490, 1, 627, 42, 7, 5, 2, 1, 792, 15, 3, 1, 1002, 56, 2, 1, 1255, 1, 1575, 77, 22, 11, 5, 3, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Positive values of triangle A168021.
Note that column 1 lists the numbers of partitions A000041(n).
Row n has A000005(n) terms.
Also, it appears that row n lists the partition numbers of the divisors of n, in decreasing order. [Omar E. Pol, Nov 23 2009]

Examples

			For example:
Consider row 8: (22, 5, 2, 1). The divisors of 8 are 1, 2, 4, 8 (see A027750). Also, there are 22 partitions of 8 into parts divisible by 1 (A000041(8)=22); 5 partitions of 8 into parts divisible by 2: {(8),(6+2),(4+4),(4+2+2),(2+2+2+2)}; 2 partitions of 8 into parts divisible by 4: {(8),(4+4)}; and 1 partition of 8 into parts divisible by 8. Then row 8 is formed by 22, 5, 2, 1.
Triangle begins:
1;
2, 1;
3, 1;
5, 2, 1;
7, 1;
11, 3, 2, 1;
15, 1;
22, 5, 2, 1;
30, 3, 1;
42, 7, 2, 1;
56, 1;
77, 11, 5, 3, 2, 1;
		

Crossrefs

Programs

  • Maple
    A168018 := proc(n) local dvs,p,i,d,a,pp,divs,par; dvs := sort(convert(numtheory[divisors](n),list)) ; p := combinat[partition](n) ; for i from 1 to nops(dvs) do d := op(i,dvs) ; a := 0 ; for pp in p do divs := true; for par in pp do if par mod d <> 0 then divs := false; end if; end do ; if divs then a := a+1 ; end if; end do ; printf("%d,",a) ; end do ; end proc: for n from 1 to 40 do A168018(n) ; end do : # R. J. Mathar, Feb 05 2010

Extensions

Terms beyond row 12 from R. J. Mathar, Feb 05 2010
Previous Showing 11-20 of 57 results. Next