A362176
Expansion of e.g.f. exp(x * (1-2*x)).
Original entry on oeis.org
1, 1, -3, -11, 25, 201, -299, -5123, 3249, 167185, 50221, -6637179, -8846903, 309737689, 769776645, -16575533939, -62762132639, 998072039457, 5265897058909, -66595289781995, -466803466259079, 4860819716300521, 44072310882063157, -383679824152382691
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x-2*x^2) ))); // G. C. Greubel, Jul 12 2024
-
With[{m=30}, CoefficientList[Series[Exp[x-2*x^2], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Jul 12 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-2*x))))
-
[(-sqrt(2))^n*hermite(n, 1/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024
A362177
Expansion of e.g.f. exp(x * (1-3*x)).
Original entry on oeis.org
1, 1, -5, -17, 73, 481, -1709, -19025, 52753, 965953, -1882709, -59839889, 64418905, 4372890913, -651783677, -367974620369, -309314089439, 35016249465985, 66566286588763, -3715188655737617, -11303745326856599, 434518893361657441, 1858790804545588915
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x-3*x^2) ))); // G. C. Greubel, Jul 12 2024
-
With[{m=30}, CoefficientList[Series[Exp[x-3*x^2], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Jul 12 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-3*x))))
-
[(-sqrt(3))^n*hermite(n, 1/(2*sqrt(3))) for n in range(31)] # G. C. Greubel, Jul 12 2024
A108400
a(n) = Product_{k = 0..n} (2^k * k!).
Original entry on oeis.org
1, 2, 16, 768, 294912, 1132462080, 52183852646400, 33664847019245568000, 347485857744891213250560000, 64560982045934655213753964953600000, 239901585047846581083822477336190648320000000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..38
- M. E. Larsen, Wronskian Harmony, Mathematics Magazine, vol. 63, no. 1, 1990, pp. 33-37.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
-
BarnesG:= func< n | (&*[Factorial(j): j in [0..n-2]]) >;
[2^Binomial(n+1,2)*BarnesG(n+2): n in [0..15]]; // G. C. Greubel, Jun 21 2022
-
Table[Product[k!*2^k, {k,0,n}], {n,0,10}] (* Vaclav Kotesovec, Nov 14 2014 *)
Table[2^Binomial[n+1,2]*BarnesG[n+2], {n,0,15}] (* G. C. Greubel, Jun 21 2022 *)
-
def barnes_g(n): return product(factorial(j) for j in (0..n-2))
[2^binomial(n+1,2)*barnes_g(n+2) for n in (0..15)] # G. C. Greubel, Jun 21 2022
A158968
Numerator of Hermite(n, 1/6).
Original entry on oeis.org
1, 1, -17, -53, 865, 4681, -73169, -578717, 8640577, 91975825, -1307797649, -17863446149, 241080488353, 4099584856537, -52313249418065, -1085408633265389, 13039168709612161, 325636855090044193, -3664348770051277073, -109170689819225595605, 1144036589538311163361
Offset: 0
-
[Numerator((&+[(-1)^k*Factorial(n)*(1/3)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
-
Numerator[Table[HermiteH[n,1/6],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
Table[3^n*HermiteH[n, 1/6], {n,0, 50}] (* G. C. Greubel, Jul 10 2018 *)
-
a(n)=numerator(polhermite(n,1/6)) \\ Charles R Greathouse IV, Jan 29 2016
-
[3^n*hermite(n, 1/6) for n in range(31)] # G. C. Greubel, Jul 12 2024
A255807
E.g.f.: exp(Sum_{k>=1} k^2 * x^k).
Original entry on oeis.org
1, 1, 9, 79, 841, 10821, 162601, 2777419, 52960209, 1112813641, 25509407401, 632772511911, 16870674740569, 480717000225229, 14568646143888201, 467640968478534691, 15841420612530533281, 564519727866573515409, 21102817266052772063689, 825435163723385398719871
Offset: 0
-
nmax=20; CoefficientList[Series[Exp[Sum[k^2*x^k,{k,1,nmax}]],{x,0,nmax}],x] * Range[0,nmax]!
nn = 20; Range[0, nn]! * CoefficientList[Series[Product[Exp[k^2*x^k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 21 2016 *)
A359762
Array read by ascending antidiagonals. T(n, k) = n!*[x^n] exp(x + (k/2) * x^2). A generalization of the number of involutions (or of 'telephone numbers').
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 10, 7, 4, 1, 1, 1, 26, 25, 10, 5, 1, 1, 1, 76, 81, 46, 13, 6, 1, 1, 1, 232, 331, 166, 73, 16, 7, 1, 1, 1, 764, 1303, 856, 281, 106, 19, 8, 1, 1, 1, 2620, 5937, 3844, 1741, 426, 145, 22, 9, 1, 1
Offset: 0
Array T(n, k) starts:
[n\k] 0 1 2 3 4 5 6 7
--------------------------------------------------------------
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... [A000012]
[1] 1, 1, 1, 1, 1, 1, 1, 1, ... [A000012]
[2] 1, 2, 3, 4, 5, 6, 7, 8, ... [A000027]
[3] 1, 4, 7, 10, 13, 16, 19, 22, ... [A016777]
[4] 1, 10, 25, 46, 73, 106, 145, 190, ... [A100536]
[5] 1, 26, 81, 166, 281, 426, 601, 806, ...
[6] 1, 76, 331, 856, 1741, 3076, 4951, 7456, ...
[7] 1, 232, 1303, 3844, 8485, 15856, 26587, 41308, ...
[8] 1, 764, 5937, 21820, 57233, 123516, 234529, 406652, ...
[9] 1, 2620, 26785, 114076, 328753, 757756, 1510705, 2719900, ...
[A000085][A047974][A115327][A115329][A115331]
- John Riordan, Introduction to Combinatorial Analysis, Dover (2002).
-
T := (n, k) -> add(binomial(n, j)*doublefactorial(j-1)*k^(j/2), j = 0..n, 2):
for n from 0 to 9 do lprint(seq(T(n, k), k = 0..7)) od;
T := (n, k) -> ifelse(k=0, 1, I^(-n)*(2*k)^(n/2)*KummerU(-n/2, 1/2, -1/(2*k))):
seq(seq(simplify(T(n-k, k)), k = 0..n), n = 0..10);
T := proc(n, k) exp(x + (k/2)*x^2): series(%, x, 16): n!*coeff(%, x, n) end:
seq(lprint(seq(simplify(T(n, k)), k = 0..8)), n = 0..9);
T := proc(n, k) option remember; if n = 0 or n = 1 then 1 else T(n, k-1) +
n*(k-1)*T(n, k-2) fi end: for n from 0 to 9 do seq(T(n, k), k=0..9) od;
# Only to check the interpretation as a determinant of a lower Hessenberg matrix:
gen := proc(i, j, n) local ev, tv; ev := irem(j+i, 2) = 0; tv := j < i and not ev;
if j > i + 1 then 0 elif j = i + 1 then -1 elif j <= i and ev then 1
elif tv and i < n then x*(n + 1 - i) - 1 else x fi end:
det := M -> LinearAlgebra:-Determinant(M):
p := (n, k) -> subs(x = k, det(Matrix(n, (i, j) -> gen(i, j, n)))):
for n from 0 to 9 do seq(p(n, k), k = 0..7) od;
-
T[n_, k_] := Sum[Binomial[n, j] Factorial2[j-1] * If[j==0, 1, k^(j/2)], {j, 0, n, 2}];
Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
-
from math import factorial, comb
def oddfactorial(n: int) -> int:
return factorial(2 * n) // (2**n * factorial(n))
def T(n: int, k: int) -> int:
return sum(comb(n, 2 * j) * oddfactorial(j) * k**j for j in range(n + 1))
for n in range(10): print([T(n, k) for k in range(8)])
A190877
Expansion of e.g.f. exp(x+x^5).
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 1844641, 20013841, 119845441, 519072841, 1816454641, 223394731561, 3501661887361, 29675906201761, 177923109591361, 844925253766561, 104750282797418881
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x+x^5],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 25 2015 *)
-
a(n):=n!*sum(binomial(n+(-4)*j,j)/(n+(-4)*j)!,j,0,n/4);
-
a(n) = if(n<5, 1, a(n-1)+5!*binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 25 2022
A288268
Expansion of e.g.f.: exp(Sum_{k>=1} (k-1)*x^k/k).
Original entry on oeis.org
1, 0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561, 175721140, 2581284541, 40864292184, 693347907421, 12548540320876, 241253367679185, 4909234733857696, 105394372192969489, 2380337795595885156, 56410454014314490981, 1399496554158060983080
Offset: 0
-
l:= func< n, a, b | Evaluate(LaguerrePolynomial(n, a), b) >;
[1,0]cat[(Factorial(n)/(n-1))*(2*l(n-1,0,-1) - l(n,0,-1)): n in [2..30]]; // G. C. Greubel, Mar 10 2021
-
a := proc(n) option remember; if n < 3 then [1, 0, 1][n+1] else
-(n^2 - 4*n + 3)*a(n - 2) + (2*n - 2)*a(n - 1) fi end:
seq(a(n), n = 0..21); # Peter Luschny, Feb 20 2022
-
Table[If[n<2, 1-n, (n!/(n-1))*(2*LaguerreL[n-1, -1] - LaguerreL[n, -1])], {n, 0, 30}] (* G. C. Greubel, Mar 10 2021 *)
-
{a(n) = n!*polcoeff(exp(sum(k=1, n, (k-1)*x^k/k)+x*O(x^n)), n)}
-
[1-n if n<2 else (factorial(n)/(n-1))*(2*gen_laguerre(n-1,0,-1) - gen_laguerre(n,0,-1)) for n in (0..30)] # G. C. Greubel, Mar 10 2021
A294361
E.g.f.: exp(Sum_{n>=1} sigma(n) * x^n).
Original entry on oeis.org
1, 1, 7, 43, 409, 3841, 50431, 648187, 10347793, 170363809, 3200390551, 62855417131, 1371594161257, 31147757782753, 768384638386639, 19814802390611131, 545309251861956001, 15661899520801953217, 475833949719419469223, 15042718034104688144299
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n):
A294363 (k=0), this sequence (k=1),
A294362 (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k)*x^k))))
A294362
E.g.f.: exp(Sum_{n>=1} sigma_2(n) * x^n).
Original entry on oeis.org
1, 1, 11, 91, 1105, 13841, 230731, 3955771, 80483201, 1738065025, 41800101931, 1070731623611, 29804263624081, 878224530964561, 27672361220570795, 919409968480087771, 32304618825218432641, 1191168445737728717441, 46119903359374012564171
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n):
A294363 (k=0),
A294361 (k=1), this sequence (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k))))
Comments