cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 73 results. Next

A362176 Expansion of e.g.f. exp(x * (1-2*x)).

Original entry on oeis.org

1, 1, -3, -11, 25, 201, -299, -5123, 3249, 167185, 50221, -6637179, -8846903, 309737689, 769776645, -16575533939, -62762132639, 998072039457, 5265897058909, -66595289781995, -466803466259079, 4860819716300521, 44072310882063157, -383679824152382691
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2023

Keywords

Crossrefs

Column k=4 of A362277.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), this sequence (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( Exp(x-2*x^2) ))); // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[x-2*x^2], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Jul 12 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-2*x))))
    
  • SageMath
    [(-sqrt(2))^n*hermite(n, 1/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

a(n) = a(n-1) - 4*(n-1)*a(n-2) for n > 1.
a(n) = n! * Sum_{k=0..floor(n/2)} (-2)^k / (k! * (n-2*k)!).
a(n) = (-sqrt(2))^n * Hermite(n, 1/(2*sqrt(2))). - G. C. Greubel, Jul 12 2024

A362177 Expansion of e.g.f. exp(x * (1-3*x)).

Original entry on oeis.org

1, 1, -5, -17, 73, 481, -1709, -19025, 52753, 965953, -1882709, -59839889, 64418905, 4372890913, -651783677, -367974620369, -309314089439, 35016249465985, 66566286588763, -3715188655737617, -11303745326856599, 434518893361657441, 1858790804545588915
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2023

Keywords

Crossrefs

Column k=6 of A362277.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), this sequence (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( Exp(x-3*x^2) ))); // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[x-3*x^2], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Jul 12 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-3*x))))
    
  • SageMath
    [(-sqrt(3))^n*hermite(n, 1/(2*sqrt(3))) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

a(n) = a(n-1) - 6*(n-1)*a(n-2) for n > 1.
a(n) = n! * Sum_{k=0..floor(n/2)} (-3)^k / (k! * (n-2*k)!).
a(n) = (-sqrt(3))^n * Hermite(n, 1/(2*sqrt(3))). - G. C. Greubel, Jul 12 2024

A108400 a(n) = Product_{k = 0..n} (2^k * k!).

Original entry on oeis.org

1, 2, 16, 768, 294912, 1132462080, 52183852646400, 33664847019245568000, 347485857744891213250560000, 64560982045934655213753964953600000, 239901585047846581083822477336190648320000000
Offset: 0

Views

Author

Philippe Deléham, Jul 02 2005

Keywords

Comments

Hankel transform (see A001906 for definition) of the sequences A000898, A001861, A035009(with first term omitted), A047974, A067147(unsigned version), A083886.
Hankel transform of the sequence with e.g.f. exp(x^2). Also (-1)^C(n+1,2)*a(n) is the Hankel transform of the sequence with e.g.f. exp(-x^2). - Paul Barry, Feb 12 2008
Let T(n,k) = (n+1)^k * (1+(-1)^(n-k))/2, then a(n) = det(T(i,j); 0<=i, j<=n). - Paul Barry, Feb 12 2008

Crossrefs

Programs

  • Magma
    BarnesG:= func< n | (&*[Factorial(j): j in [0..n-2]]) >;
    [2^Binomial(n+1,2)*BarnesG(n+2): n in [0..15]]; // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    Table[Product[k!*2^k, {k,0,n}], {n,0,10}] (* Vaclav Kotesovec, Nov 14 2014 *)
    Table[2^Binomial[n+1,2]*BarnesG[n+2], {n,0,15}] (* G. C. Greubel, Jun 21 2022 *)
  • SageMath
    def barnes_g(n): return product(factorial(j) for j in (0..n-2))
    [2^binomial(n+1,2)*barnes_g(n+2) for n in (0..15)] # G. C. Greubel, Jun 21 2022

Formula

a(n) = A006125(n+1)*A000178(n).
a(n) = Product_{i=1..n} Product_{j=0..i-1} {2*(i-j)}. - Paul Barry, Aug 02 2008
a(n) ~ 2^((n+1)^2/2) * n^(n^2/2+n+5/12) * Pi^((n+1)/2) / (A * exp(3*n^2/4+n-1/12)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 14 2014

A158968 Numerator of Hermite(n, 1/6).

Original entry on oeis.org

1, 1, -17, -53, 865, 4681, -73169, -578717, 8640577, 91975825, -1307797649, -17863446149, 241080488353, 4099584856537, -52313249418065, -1085408633265389, 13039168709612161, 325636855090044193, -3664348770051277073, -109170689819225595605, 1144036589538311163361
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Sequences with e.g.f = exp(x + q*x^2): this sequence (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(1/3)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
    
  • Mathematica
    Numerator[Table[HermiteH[n,1/6],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
    Table[3^n*HermiteH[n, 1/6], {n,0, 50}] (* G. C. Greubel, Jul 10 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,1/6)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • SageMath
    [3^n*hermite(n, 1/6) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 3^n * Hermite(n, 1/6).
E.g.f.: exp(x - 9*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/3)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -a(n-1) +18*(n-1)*a(n-2)=0. - [DLMF] Georg Fischer, Feb 06 2021

A255807 E.g.f.: exp(Sum_{k>=1} k^2 * x^k).

Original entry on oeis.org

1, 1, 9, 79, 841, 10821, 162601, 2777419, 52960209, 1112813641, 25509407401, 632772511911, 16870674740569, 480717000225229, 14568646143888201, 467640968478534691, 15841420612530533281, 564519727866573515409, 21102817266052772063689, 825435163723385398719871
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

In general, if e.g.f. = exp(Sum_{k>=1} k^m * x^k) and m>0, then a(n) ~ (m+2)^(-1/2) * Gamma(m+2)^(1/(2*m+4)) * exp((m+2)/(m+1) * Gamma(m+2)^(1/(m+2)) * n^((m+1)/(m+2)) + zeta(-m) - n) * n^(n - 1/(2*m+4)).
It appears that the sequence a(n) taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k: if true, then the sequence a(n) taken modulo k would be periodic with period dividing k. - Peter Bala, Nov 14 2017
The above conjecture is true - see the Bala link. - Peter Bala, Jan 20 2018

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[Series[Exp[Sum[k^2*x^k,{k,1,nmax}]],{x,0,nmax}],x] * Range[0,nmax]!
    nn = 20; Range[0, nn]! * CoefficientList[Series[Product[Exp[k^2*x^k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 21 2016 *)

Formula

E.g.f.: exp(x*(1+x)/(1-x)^3).
a(n) ~ 2^(-7/8) * 3^(1/8) * n^(n-1/8) * exp(2^(9/4) * 3^(-3/4) * n^(3/4) - n).
a(n) = n!*y(n) where y(0)=1 and y(n)=(Sum_{k=0..n-1} (n-k)^3*y(k))/n for n>=1. - Benedict W. J. Irwin, Jun 02 2016
a(n) = (4*n-3)*a(n-1) - 2*(n-1)*(3*n-8)*a(n-2) + (n-1)*(n-2)*(4*n-11)*a(n-3) - (n-1)*(n-2)*(n-3)*(n-4)*a(n-4). - Peter Bala, Nov 12 2017
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(J_3(k)/k), where J_3() is the Jordan function (A059376). - Ilya Gutkovskiy, May 25 2019

A359762 Array read by ascending antidiagonals. T(n, k) = n!*[x^n] exp(x + (k/2) * x^2). A generalization of the number of involutions (or of 'telephone numbers').

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 10, 7, 4, 1, 1, 1, 26, 25, 10, 5, 1, 1, 1, 76, 81, 46, 13, 6, 1, 1, 1, 232, 331, 166, 73, 16, 7, 1, 1, 1, 764, 1303, 856, 281, 106, 19, 8, 1, 1, 1, 2620, 5937, 3844, 1741, 426, 145, 22, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jan 14 2023

Keywords

Comments

The array is a generalization of the number of involutions of permutations on n letters, A000085, also known as 'telephone numbers'. According to Bednarz et al. the telephone number interpretation "is due to John Riordan, who noticed that T(n, 1) is the number of connection patterns in a telephone system with n subscribers."
In graph theory, the n-th telephone number is the total number of matchings of a complete graph K_n (see the Wikipedia entry). Assuming a network with k possibilities of connections leads to a network that can be modeled by a complete multigraph K(n, k). The total number of connection patterns in such a network is given by T(n, k).

Examples

			Array T(n, k) starts:
  [n\k] 0   1      2        3       4        5        6        7
  --------------------------------------------------------------
  [0] 1,    1,     1,       1,      1,       1,       1,       1, ... [A000012]
  [1] 1,    1,     1,       1,      1,       1,       1,       1, ... [A000012]
  [2] 1,    2,     3,       4,      5,       6,       7,       8, ... [A000027]
  [3] 1,    4,     7,      10,     13,      16,      19,      22, ... [A016777]
  [4] 1,   10,    25,      46,     73,     106,     145,     190, ... [A100536]
  [5] 1,   26,    81,     166,    281,     426,     601,     806, ...
  [6] 1,   76,   331,     856,   1741,    3076,    4951,    7456, ...
  [7] 1,  232,  1303,    3844,   8485,   15856,   26587,   41308, ...
  [8] 1,  764,  5937,   21820,  57233,  123516,  234529,  406652, ...
  [9] 1, 2620, 26785,  114076, 328753,  757756, 1510705, 2719900, ...
   [A000085][A047974][A115327][A115329][A115331]
		

References

  • John Riordan, Introduction to Combinatorial Analysis, Dover (2002).

Crossrefs

Programs

  • Maple
    T := (n, k) -> add(binomial(n, j)*doublefactorial(j-1)*k^(j/2), j = 0..n, 2):
    for n from 0 to 9 do lprint(seq(T(n, k), k = 0..7)) od;
    T := (n, k) -> ifelse(k=0, 1, I^(-n)*(2*k)^(n/2)*KummerU(-n/2, 1/2, -1/(2*k))):
    seq(seq(simplify(T(n-k, k)), k = 0..n), n = 0..10);
    T := proc(n, k) exp(x + (k/2)*x^2): series(%, x, 16): n!*coeff(%, x, n) end:
    seq(lprint(seq(simplify(T(n, k)), k = 0..8)), n = 0..9);
    T := proc(n, k) option remember; if n = 0 or n = 1 then 1 else T(n, k-1) +
    n*(k-1)*T(n, k-2) fi end: for n from 0 to 9 do seq(T(n, k), k=0..9) od;
    # Only to check the interpretation as a determinant of a lower Hessenberg matrix:
    gen := proc(i, j, n) local ev, tv; ev := irem(j+i, 2) = 0; tv := j < i and not ev;
    if j > i + 1 then 0 elif j = i + 1 then -1 elif j <= i and ev then 1
    elif tv and i < n then x*(n + 1 - i) - 1 else x fi end:
    det := M -> LinearAlgebra:-Determinant(M):
    p := (n, k) -> subs(x = k, det(Matrix(n, (i, j) -> gen(i, j, n)))):
    for n from 0 to 9 do seq(p(n, k), k = 0..7) od;
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] Factorial2[j-1] * If[j==0, 1,  k^(j/2)], {j, 0, n, 2}];
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
  • Python
    from math import factorial, comb
    def oddfactorial(n: int) -> int:
        return factorial(2 * n) // (2**n * factorial(n))
    def T(n: int, k: int) -> int:
        return sum(comb(n, 2 * j) * oddfactorial(j) * k**j for j in range(n + 1))
    for n in range(10): print([T(n, k) for k in range(8)])

Formula

T(n, k) = Sum_{j=0..n, j even} binomial(n, j) * (j - 1)!! * k^(j/2).
T(n, k) = T(n, k-1) + n*(k-1)*T(n, k-2) for n >= 2, T(n, 0) = T(n, 1) = 1.
T(n, k) = i^(-n) * (2*k)^(n/2) * KummerU(-n/2, 1/2, -1/(2*k)) for k >= 1, and T(n, 0) = 1.

A190877 Expansion of e.g.f. exp(x+x^5).

Original entry on oeis.org

1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 1844641, 20013841, 119845441, 519072841, 1816454641, 223394731561, 3501661887361, 29675906201761, 177923109591361, 844925253766561, 104750282797418881
Offset: 0

Views

Author

Vladimir Kruchinin, May 23 2011

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x+x^5],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 25 2015 *)
  • Maxima
    a(n):=n!*sum(binomial(n+(-4)*j,j)/(n+(-4)*j)!,j,0,n/4);
    
  • PARI
    a(n) = if(n<5, 1, a(n-1)+5!*binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 25 2022

Formula

a(n) = n! * Sum_{j=0..n/4} binomial(n+(-4)*j,j)/(n+(-4)*j)!.
a(n) = a(n-1) + 5! * binomial(n-1,4) * a(n-5) for n > 4. - Seiichi Manyama, Feb 25 2022

A288268 Expansion of e.g.f.: exp(Sum_{k>=1} (k-1)*x^k/k).

Original entry on oeis.org

1, 0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561, 175721140, 2581284541, 40864292184, 693347907421, 12548540320876, 241253367679185, 4909234733857696, 105394372192969489, 2380337795595885156, 56410454014314490981, 1399496554158060983080
Offset: 0

Views

Author

Seiichi Manyama, Oct 20 2017

Keywords

Crossrefs

Programs

  • Magma
    l:= func< n, a, b | Evaluate(LaguerrePolynomial(n, a), b) >;
    [1,0]cat[(Factorial(n)/(n-1))*(2*l(n-1,0,-1) - l(n,0,-1)): n in [2..30]]; // G. C. Greubel, Mar 10 2021
    
  • Maple
    a := proc(n) option remember; if n < 3 then [1, 0, 1][n+1] else
    -(n^2 - 4*n + 3)*a(n - 2) + (2*n - 2)*a(n - 1) fi end:
    seq(a(n), n = 0..21); # Peter Luschny, Feb 20 2022
  • Mathematica
    Table[If[n<2, 1-n, (n!/(n-1))*(2*LaguerreL[n-1, -1] - LaguerreL[n, -1])], {n, 0, 30}] (* G. C. Greubel, Mar 10 2021 *)
  • PARI
    {a(n) = n!*polcoeff(exp(sum(k=1, n, (k-1)*x^k/k)+x*O(x^n)), n)}
    
  • Sage
    [1-n if n<2 else (factorial(n)/(n-1))*(2*gen_laguerre(n-1,0,-1) - gen_laguerre(n,0,-1)) for n in (0..30)] # G. C. Greubel, Mar 10 2021

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} (k-1)*a(n-k)/(n-k)! for n > 0.
E.g.f.: (1 - x) * exp(x/(1 - x)). - Ilya Gutkovskiy, Jul 27 2020
a(n) = (n!/(n-1))*( 2*LaguerreL(n-1, -1) - LaguerreL(n, -1) ) with a(0) = 1, a(1) = 0. - G. C. Greubel, Mar 10 2021
a(n) ~ n^(n - 3/4) * exp(-1/2 + 2*sqrt(n) - n) / sqrt(2) * (1 - 65/(48*sqrt(n))). - Vaclav Kotesovec, Mar 10 2021, minor term corrected Dec 01 2021
From Peter Luschny, Feb 20 2022: (Start)
a(n) = n! * Sum_{k=0..n} (-1)^k * LaguerreL(n-k, k-1, -1).
a(n) = 2*(n - 1)*a(n - 1) - (n^2 - 4*n + 3)*a(n - 2) for n >= 3. (End)
From Peter Bala, May 26 2023: (Start)
a(n) = Sum_{k = 0..n} |Stirling1(n,k)|*A000296(k) (follows from the fundamental theorem of Riordan arrays).
Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is purely periodic with the period dividing k. For example, modulo 7 we obtain the purely periodic sequence [1, 0, 1, 4, 0, 3, 2, 1, 0, 1, 4, 0, 3, 2, ...] of period 7. Cf. A047974. (End)
For n>1, a(n) = (2*n*A002720(n-1) - A002720(n))/(n-1). - Vaclav Kotesovec, May 27 2023

A294361 E.g.f.: exp(Sum_{n>=1} sigma(n) * x^n).

Original entry on oeis.org

1, 1, 7, 43, 409, 3841, 50431, 648187, 10347793, 170363809, 3200390551, 62855417131, 1371594161257, 31147757782753, 768384638386639, 19814802390611131, 545309251861956001, 15661899520801953217, 475833949719419469223, 15042718034104688144299
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 14 2017: (Start)
The terms of the sequence appear to be of the form 6*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(7*n+2) == 0 (mod 7); a(11*n+9) == 0 (mod 11); a(13*n+11) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): A294363 (k=0), this sequence (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000203(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(k*x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
a(n) ~ Pi^(1/3) * exp((3*Pi)^(2/3) * n^(2/3)/2 - 3^(1/3) * n^(1/3) / (2*Pi^(2/3)) + 1/24 - 1/(8*Pi^2) - n) * n^(n - 1/6) / 3^(2/3). - Vaclav Kotesovec, Sep 04 2018

A294362 E.g.f.: exp(Sum_{n>=1} sigma_2(n) * x^n).

Original entry on oeis.org

1, 1, 11, 91, 1105, 13841, 230731, 3955771, 80483201, 1738065025, 41800101931, 1070731623611, 29804263624081, 878224530964561, 27672361220570795, 919409968480087771, 32304618825218432641, 1191168445737728717441, 46119903359374012564171
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 14 2017: (Start)
It appears that the sequence taken modulo 10 is periodic with period (1, 1, 1, 1, 5) of length 5.
More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(5*n+4) = 0 (mod 5); a(7*n+3) == 0 (mod 7); a(11*n+2) == 0 (mod 11); a(13*n+3) == 0 (mod 13); a(17*n+4) == 0 (mod 17); a(19*n+12) == 0 (mod 19). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): A294363 (k=0), A294361 (k=1), this sequence (k=2).
Cf. A001157.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A001157(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(k^2*x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
a(n) ~ (3*Zeta(3))^(1/8) * exp(2^(9/4) * Zeta(3)^(1/4) * n^(3/4) / 3^(3/4) - n^(1/4) / (2^(9/4) * 3^(5/4) * Zeta(3)^(1/4)) - n) * n^(n - 1/8) / 2^(7/8). - Vaclav Kotesovec, Sep 04 2018
Previous Showing 21-30 of 73 results. Next