cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 95 results. Next

A054017 Chowla's function of n modulo n is a square (excluding 0's).

Original entry on oeis.org

14, 20, 39, 40, 46, 55, 80, 94, 100, 104, 117, 130, 155, 158, 183, 190, 200, 203, 291, 292, 295, 299, 320, 323, 334, 416, 430, 446, 464, 475, 488, 530, 539, 549, 567, 579, 583, 638, 650, 695, 718, 799, 873, 878, 890, 943, 955, 959, 964, 979, 1030, 1118
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := (c = DivisorSigma[1, n] - n - 1) > 0 && IntegerQ @ Sqrt @ Mod[c, n]; Select[Range[1000], aQ] (* Amiram Eldar, Aug 28 2019 *)

A054018 Squares mentioned in A054017.

Original entry on oeis.org

9, 1, 16, 9, 25, 16, 25, 49, 16, 1, 64, 121, 36, 81, 64, 169, 64, 36, 100, 225, 64, 36, 121, 36, 169, 49, 361, 225, 1, 144, 441, 441, 144, 256, 400, 196, 64, 441, 1, 144, 361, 64, 400, 441, 729, 64, 196, 144, 729, 100, 841, 729, 25, 400, 256, 1225, 100, 729, 1225
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

If Chowla's function of n read (modulo n) is a nonzero square, print this square.
Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - n - 1; aQ[n_] := (c = chowla[n]) > 0 && IntegerQ @ Sqrt @ Mod[c, n]; Mod[chowla[#], #] & /@ Select[Range[1000], aQ] (* Amiram Eldar, Aug 28 2019 *)

A054022 Chowla function of n is divisible by the number of divisors of n.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 27, 29, 31, 32, 35, 36, 37, 39, 41, 43, 47, 50, 51, 53, 55, 59, 61, 67, 71, 73, 75, 79, 83, 87, 89, 91, 95, 97, 98, 101, 103, 107, 109, 111, 113, 115, 119, 123, 127, 131, 135, 137, 139, 143, 149, 151, 155, 157, 159, 162, 163
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Complement is A054023 Cf. A000005, A048050, A054014.

Programs

  • Maple
    with(numtheory):
    [seq(`if`((sigma(i)-i-1) mod tau(i)=0,i,print( )),i=1..1000)];
  • Mathematica
    Select[Range[200],Divisible[DivisorSigma[1,#]-1-#,DivisorSigma[0,#]]&] (* Harvey P. Dale, Mar 11 2012 *)

A057533 Values of n for which iteration of Chowla's function loops.

Original entry on oeis.org

48, 75, 92, 140, 146, 176, 195, 215, 255, 267, 287, 312, 332, 369, 386, 407, 411, 519, 527, 551, 627, 734, 744, 818, 972, 973, 984, 1027, 1050, 1078, 1096, 1149, 1175, 1185, 1387, 1408, 1472, 1474, 1535, 1575, 1648, 1651, 1784, 1792, 1880, 1888, 1891
Offset: 1

Views

Author

Asher Auel, Sep 03 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Cf. A048050.
Cf. A005276 (subsequence). - Reinhard Zumkeller, Feb 09 2013

Programs

  • Haskell
    a057533 n = a057533_list !! (n-1)
    a057533_list = filter (\z -> p z [z]) [1..] where
       p x ts = y > 0 && (y `elem` ts || p y (y:ts)) where y = a048050 x
    -- Reinhard Zumkeller, Feb 09 2013

A070160 Nonprime numbers k such that phi(k)/(sigma(k) - k - 1) is an integer.

Original entry on oeis.org

4, 9, 15, 25, 35, 49, 95, 119, 121, 143, 169, 209, 287, 289, 319, 323, 361, 377, 527, 529, 559, 779, 841, 899, 903, 923, 961, 989, 1007, 1189, 1199, 1343, 1349, 1369, 1681, 1763, 1849, 1919, 2159, 2209, 2507, 2759, 2809, 2911, 3239, 3481, 3599, 3721
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Comments

Euler phi value divided by Chowla function gives integer.

Examples

			In A062972, n=15: q = 8/8 = 1; n=101: q = 100/1 = 100. While integer quotient chowla(n)/phi(n) gives only 5 nonprime solutions below 20000000 (see A070037), here, the integer reciprocals, q = phi(n)/chowla(n) obtained with squared primes and with other composites. If n=p^2, q = p(p-1)/p = p-1. So for squared primes, the quotients give A006093.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n-1); If[IntegerQ[s], Print[n]], {n, 2, 100000}]

Formula

{k : A000010(k)/A048050(k) is an integer}.

A070161 Nonprime numbers n such that q=phi(n)/(sigma(n)-n-1) is an integer and n is not a prime square.

Original entry on oeis.org

15, 35, 95, 119, 143, 209, 287, 319, 323, 377, 527, 559, 779, 899, 903, 923, 989, 1007, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2507, 2759, 2911, 3239, 3599, 3827, 4031, 4607, 5183, 5207, 5249, 5459, 5543, 6439, 6887, 7067, 7279, 7739, 8159, 8639, 9179
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Examples

			n=35: phi(35)=24, sigma(35)=1+5+7+35=48, chowla(35)=12, quotient=2
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n-1); If[ !PrimeQ[n]&&!PrimeQ[Sqrt[n]]&&IntegerQ[s], Print[n]], {n, 2, 100000}]

Formula

q=A000010(n)/A048050(n) and n is not in A001248.

A085842 Numbers k whose divisors (apart from 1 and k) sum to a prime.

Original entry on oeis.org

4, 6, 9, 10, 22, 25, 30, 34, 42, 49, 58, 60, 70, 78, 82, 84, 102, 118, 120, 121, 138, 142, 168, 169, 186, 198, 202, 214, 216, 220, 222, 228, 234, 238, 240, 246, 258, 270, 274, 280, 282, 289, 294, 298, 348, 358, 360, 361, 364, 370, 372, 382, 390, 394, 406, 414, 438, 442, 444
Offset: 1

Views

Author

Chuck Seggelin, Jul 05 2003

Keywords

Examples

			102 is a member since the divisors of 102 are {1, 2, 3, 6, 17, 34, 51, 102} and 2 + 3 + ... + 51 = 113, a prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); b := []; for n from 3 to 2000 do t1 := divisors(n); t2 := convert(t1,list); t3 := add(t2[i],i=1..nops(t2)); if isprime(t3-1-n) then b := [op(b),n]; fi; od: b;
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-1; lst={};Do[a=f[n];If[PrimeQ[a],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 21 2009 *)
    Select[Range[500], PrimeQ[DivisorSigma[1, #] - # - 1] &] (* Amiram Eldar, Dec 04 2020 *)
  • PARI
    isok(k) = isprime(sigma(k)-1-k); \\ Michel Marcus, Dec 04 2020

A137510 Irregular triangle read by rows in which row n lists the divisors of n in the range 1 < d < n; or 0 if there are no such divisors.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 3, 0, 2, 4, 3, 2, 5, 0, 2, 3, 4, 6, 0, 2, 7, 3, 5, 2, 4, 8, 0, 2, 3, 6, 9, 0, 2, 4, 5, 10, 3, 7, 2, 11, 0, 2, 3, 4, 6, 8, 12, 5, 2, 13, 3, 9, 2, 4, 7, 14, 0, 2, 3, 5, 6, 10, 15, 0, 2, 4, 8, 16, 3, 11, 2, 17, 5, 7, 2, 3, 4, 6, 9, 12, 18, 0, 2, 19, 3, 13, 2, 4, 5, 8, 10, 20, 0, 2, 3, 6, 7
Offset: 1

Views

Author

N. J. A. Sloane, May 08 2008

Keywords

Comments

The length of row n is A264440(n). - Wolfdieter Lang, Jan 16 2016
Row n lists the nontrivial divisors of n, or 0 if there are no such divisors. - Omar E. Pol, Nov 22 2010

Examples

			From _Omar E. Pol_, Nov 22 2010: (Start)
The irregular triangle begins:
0;
0;
0;
2;
0;
2, 3;
0;
2, 4;
3;
2, 5;
0,
2, 3, 4, 6;
(End)
		

Crossrefs

Cf. A070824, A027750, A027751, A264440 (row length). Row sums give A048050.

Programs

  • Maple
    for n from 1 to 80 do if isprime(n) or n = 1 then printf("0,") ; else dvs := sort(convert(numtheory[divisors](n) minus {1,n},list) ) ; for d in dvs do printf("%d,",d) ; od: fi ; od: # R. J. Mathar, May 23 2008
    with(numtheory): A:=proc (n) local div: div:=divisors(n): `minus`(div, {div[tau(n)], div[1]}) end proc: for n to 35 do A(n) end do: a:=proc (n) if A(n)={} then 0 else seq(A(n)[j],j=1..tau(n)-2) end if end proc: for n to 35 do a(n) end do; # yields sequence in triangular form - Emeric Deutsch, May 25 2008
  • Mathematica
    Array[Complement[Divisors@ #, {1, #}] &, {42}] /. {} -> {0} // Flatten (* Michael De Vlieger, Jan 16 2016 *)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, May 23 2008

A174514 Partial sums of A048995.

Original entry on oeis.org

1, 5, 56, 143, 238, 357, 480, 625, 786, 973, 1178, 1387, 1602, 1839, 2084, 2331, 2592, 2859, 3134, 3421, 3710, 4001, 4304, 4609, 4930, 5253, 5578, 5913, 6254, 6625, 7030, 7437, 7862, 8291, 8738, 9209, 9682, 10179, 10694, 11211, 11730, 12259, 12798, 13349, 13904, 14465, 15040, 15623, 16234, 16857, 17482, 18109, 18766
Offset: 1

Views

Author

Jonathan Vos Post, Nov 28 2010

Keywords

Comments

The subsequence of values which are themselves in A048995 begins: 1, 625. The subsequence of primes begins 5, 4001, 8291, 9209.

Examples

			a(8) = 1 + 4 + 51 + 87 + 95 + 119 + 123 + 145 = 625 = 5^4.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A048995(i) = SUM[i=1..n] (numbers that are not the sum of the nontrivial factors, excluding 1 and i, of some natural number).

A187086 Numbers n with property that sum of divisors of n except 1 and n is a positive square.

Original entry on oeis.org

14, 39, 40, 46, 55, 94, 117, 130, 155, 158, 183, 190, 203, 208, 291, 292, 295, 299, 320, 323, 334, 430, 446, 475, 488, 530, 539, 549, 567, 579, 583, 638, 695, 718, 799, 873, 878, 890, 928, 943, 955, 959, 964, 979, 1030, 1118, 1191, 1255, 1384, 1411, 1454
Offset: 1

Views

Author

Zak Seidov, Mar 04 2011

Keywords

Comments

Or, Chowla's function of n is a positive square.

Examples

			divisors(14)={1,2,7,14}, 2+7=9=3^2 (= A187087(1));
divisors(40)={1,2,4,5,8,10,20,40}, 2+4+5+8+10+20=49=7^2 (= A187087(3)).
		

Crossrefs

Programs

  • Magma
    IsA187086:=func< n | not IsPrime(n) and IsSquare(&+[ a: a in Divisors(n) | a ne 1 and a ne n ]) >; [ n: n in [2..2000] | IsA187086(n) ]; // Klaus Brockhaus, Mar 04 2011
  • Maple
    select(t -> not isprime(t) and issqr(numtheory:-sigma(t)-1-t), [$2..2000]); # Robert Israel, Oct 25 2017
  • Mathematica
    Select[Range@ 1500, And[! PrimeQ@ #, IntegerQ@ Sqrt[DivisorSigma[1, #] - # - 1]] &] (* Michael De Vlieger, Oct 25 2017 *)
  • PARI
    {for(n=1,2000,spf=sumdiv(n,x,x)-1-n;if(spf>0&&issquare(spf),print1(n", ")))}
    
Previous Showing 41-50 of 95 results. Next