cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 95 results. Next

A216982 Anti-Chowla's function: sum of anti-divisors of n except the largest.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 5, 3, 2, 7, 5, 5, 10, 7, 8, 3, 17, 16, 5, 11, 8, 21, 19, 7, 22, 7, 24, 27, 5, 16, 21, 37, 26, 7, 29, 8, 25, 45, 26, 28, 14, 38, 27, 11, 56, 27, 29, 24, 39, 47, 8, 59, 53, 16, 37, 19, 36, 57, 51, 67, 16, 37, 70, 3, 41, 42, 87, 67, 8, 55
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 19 2013

Keywords

Comments

Numbers n such that Chowla's function(n) = a(n): 1, 2, 3, 10, 15, 28, 75, 88, 231, 284, 602,...
Places n where a(n) is zero: 1, 2, 3, 4, 6, 96,...
Fixed points of this sequence: 17, 53, 127, 217, 385, 2321,...
Places n where a(n) equals the largest anti-divisor: 1, 2, 7, 10, 31, 37, 39, 55, 78, 160, 482, 937, 1599, 2496,...
Numbers n such that n -/+ 1 and a(n -/+ 1) are all primes: 6, 18, 72, 102, 108, 198, 270, 432, 570, 882,...

Examples

			Anti-divisors of 7 are 2, 3, 5, so a(7) = 2 + 3 = 5.
		

Crossrefs

Programs

Formula

a(n) = A066417(n) - A066481(n).

A218767 Total number of divisors and anti-divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 5, 6, 5, 7, 5, 8, 6, 7, 7, 7, 7, 10, 5, 9, 7, 9, 7, 10, 8, 7, 9, 11, 5, 11, 7, 12, 9, 7, 9, 11, 7, 11, 9, 12, 6, 13, 7, 9, 13, 9, 7, 13, 9, 12, 7, 13, 9, 11, 9, 11, 9, 11, 9, 18, 6, 9, 13, 9, 9, 13, 11, 13, 7, 13, 7, 18, 9, 9, 11, 11, 13, 13, 5, 15, 11, 11, 9, 16, 12, 9
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 05 2013

Keywords

Comments

Or tau(n) + anti-tau(n), where anti-tau = A066272.
Total sum of divisors and anti-divisors of n or sigma(n) + A066417(n): 1, 3, 6, 10, 11, 16, 18, 23, 21, 32, 24, 41, 33, 40, 42, 45, 46, 67, 38, 66, 54, 72, 58, 83, 70, 66, 82, 102, 54, 108,...
Numbers n such that sigma(n) = n + anti-sigma(n): A074751.
Numbers n such that Chowla's function(n) = anti-sigma(n): 1, 2, 16, 60, 72,...
Number of divisors of n minus number of anti-divisors of n or tau(n) - anti-tau(n): 1, 2, 1, 2, 0, 3, -1, 2, 1, 1, -1, 4, -2, 1, 1, 3, -3, 2, -1, 3, 1, -1, -3, 6, -2, 1, -1, 1, -1, 5, -3, 0, -1, 1, -1, 7, -3, -3, -1, 4, -2, 3, -3, 3, -1,...
Product of number of divisors of n and number of anti-divisors of n, or tau(n)*anti-tau(n): 0, 0, 2, 3, 4, 4, 6, 8, 6, 12, 6, 12, 8, 12, 12, 10, 10, 24, 6, 18, 12, 20, 10, 16, 15, 12, 20, 30, 6, 24,...
Number of ways to write n as k*(k - m) with k divisor and m anti-divisor of n: 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0,...
Numbers which are not of the form k*(k - m), k divisor, m anti-divisor (i.e., where the number of ways is zero): 1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 23, 24, 25, 26, 29,

Crossrefs

Programs

Formula

a(n) = A000005(n) + A066272(n).

A239313 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros, except the first column which lists 0 together with the nonnegative integers, and the first element of column k is in row k*(k+1)/2.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 3, 3, 4, 0, 1, 5, 5, 0, 6, 0, 0, 7, 7, 3, 8, 0, 0, 1, 9, 9, 0, 0, 10, 0, 5, 0, 11, 11, 0, 0, 12, 0, 0, 3, 13, 13, 7, 0, 1, 14, 0, 0, 0, 0, 15, 15, 0, 0, 0, 16, 0, 9, 5, 0, 17, 17, 0, 0, 0, 18, 0, 0, 0, 3, 19, 19, 11, 0, 0, 1, 20, 0, 0, 7, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Mar 15 2014

Keywords

Comments

Alternating row sums give the Chowla's function, i.e., sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A048050(n).
Row n has length A003056(n) hence column k starts in row A000217(k).
Column 1 gives 0 together with A001477.
Column 2 is A193356.
The number of positive terms in row n is A001227(n), if n >= 3. - Omar E. Pol, Apr 18 2016

Examples

			Triangle begins (row n = 1..24):
0;
0;
1,   1;
2,   0;
3,   3;
4,   0,  1;
5,   5,  0;
6,   0,  0;
7,   7,  3;
8,   0,  0,  1;
9,   9,  0,  0;
10,  0,  5,  0;
11, 11,  0,  0;
12,  0,  0,  3;
13, 13,  7,  0,  1;
14,  0,  0,  0,  0;
15, 15,  0,  0,  0;
16,  0,  9,  5,  0;
17, 17,  0,  0,  0;
18,  0,  0,  0,  3;
19, 19, 11,  0,  0,  1;
20,  0,  0,  7,  0,  0;
21, 21,  0,  0,  0,  0;
22,  0, 13,  0,  0,  0;
...
For n = 15 the divisors of 15 are 1, 3, 5, 15 therefore the sum of divisors of 15 except 1 and 15 is 3 + 5 = 8. On the other hand the 15th row of triangle is 13, 13, 7, 0, 1, hence the alternating row sum is 13 - 13 + 7 - 0 + 1 = 8, equalling the sum of divisors of 15 except 1 and 15.
If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of divisors of n, except 1 and n. Example: the sum of divisors of 24 except 1 and 24 is 2 + 3 + 4 + 6 + 8 + 12 = 35, and the alternating sum of the 24th row of triangle is 22 - 0 + 13 - 0 + 0 - 0 = 35.
		

Crossrefs

Formula

T(n,k) = A196020(n,k), if k >= 2. - Omar E. Pol, Apr 18 2016

A261023 Least number k such that prime(n) = sigma(k) - k - 1.

Original entry on oeis.org

4, 9, 6, 10, 121, 22, 289, 34, 529, 841, 58, 1369, 30, 82, 2209, 42, 3481, 118, 4489, 5041, 70, 6241, 6889, 78, 9409, 10201, 202, 60, 214, 102, 16129, 17161, 18769, 84, 138, 298, 24649, 26569, 27889, 29929, 32041, 358, 36481, 238, 186, 394, 44521, 49729, 51529
Offset: 1

Views

Author

Paolo P. Lava, Aug 07 2015

Keywords

Comments

For any prime k <= p^2. In fact if k = p^2 we have that sigma(p) = sigma(p^2) - p^2, that is 1 + p = 1 + p + p^2 - p^2.

Examples

			sigma(2) = 3 and 4 is the least number such that sigma(4) - 4 = 7 - 4 = 3.
sigma(13) = 14 and 22 is the least number such that sigma(22) - 22 = 36 - 22 = 14.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do
    if isprime(n) then for k from 1 to q do
    if sigma(n)=sigma(k)-k then print(k); break; fi; od;
    fi; od; end: P(10^9);
  • Mathematica
    Table[k = 1; While[DivisorSigma[1, Prime@ p] != DivisorSigma[1, k] - k, k++]; k, {p, 60}] (* Michael De Vlieger, Aug 07 2015 *)
  • PARI
    a(n) = my(k = 1, p = prime(n)); while(sigma(k)-k-1 != p, k++); k; \\ Michel Marcus, Aug 12 2015
    
  • PARI
    first(m)=my(v=vector(m),k);for(i=1,m,k=1;while(!(prime(i)==sigma(k)-k-1),k++);v[i]=k;);v; \\ Anders Hellström, Aug 14 2015

Formula

a(n) = A070015(A008864(n)). - Robert Israel, Aug 14 2015

A288654 a(n) = (sigma(n)-n-1)*(3-omega(n)).

Original entry on oeis.org

-3, 0, 0, 4, 0, 5, 0, 12, 6, 7, 0, 15, 0, 9, 8, 28, 0, 20, 0, 21, 10, 13, 0, 35, 10, 15, 24, 27, 0, 0, 0, 60, 14, 19, 12, 54, 0, 21, 16, 49, 0, 0, 0, 39, 32, 25, 0, 75, 14, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 0, 0, 33, 40, 124, 18, 0, 0, 57, 26, 0, 0, 122
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2017

Keywords

Comments

If n is prime, then a(n) = 0. If n is semiprime, then a(n) = sopfr(n).

Crossrefs

Cf. A000203 (sigma), A001221 (omega), A001414 (sopfr), A048050 (Chowla's function).

Programs

  • Mathematica
    Table[(DivisorSigma[1, n] - n - 1) (3 - PrimeNu[n]), {n, 100}]
  • PARI
    A288654(n) = ((sigma(n)-n-1)*(3-omega(n))); \\ Antti Karttunen, Mar 04 2018

A326830 Expansion of Product_{i>=2, j>=2} 1 / (1 - x^(i*j))^j.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 5, 0, 9, 3, 17, 0, 46, 6, 68, 23, 153, 27, 297, 67, 534, 188, 978, 276, 1932, 620, 3250, 1313, 6033, 2246, 10854, 4361, 18776, 8639, 32831, 14835, 58230, 27635, 98052, 50980, 169522, 88243, 289720, 157179, 486232, 280206, 818006, 478014
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Euler transform of A048050.
Convolution of A326830 and A002865 is A318784. - Vaclav Kotesovec, Oct 26 2019

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<4, 0, sigma(n)-1-n) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    nmax = 47; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k] - k - 1), {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d == 1, 0, d (DivisorSigma[1, d] - d - 1)], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 47}]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^k)^A048050(k).
G.f.: exp(Sum_{k>=1} (A001001(k) - A000203(k) - A001157(k) + 1) * x^k / k).
a(n) ~ exp(3^(2/3) * ((Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3)/2 - Pi^2 * (3/((Pi^2 - 6)*Zeta(3)))^(1/3) * n^(1/3)/4 - Pi^4 / (32*(Pi^2 - 6)*Zeta(3)) - 1/8) * A^(3/2)* (2*Pi)^(1/24) / (3^(1/8) * ((Pi^2 - 6)*Zeta(3))^(3/8) * n^(1/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2019

A326831 Expansion of Product_{i>=2, j>=2} (1 + x^(i*j))^j.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 5, 0, 7, 3, 17, 0, 37, 6, 58, 23, 120, 21, 235, 67, 390, 161, 726, 230, 1349, 521, 2225, 1055, 3990, 1714, 7040, 3341, 11604, 6294, 20053, 10500, 34252, 19115, 56055, 34168, 94306, 56998, 157078, 99515, 254766, 171484, 419287, 283565
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Weigh transform of A048050.
Convolution of A326831 and A025147 is A319107. - Vaclav Kotesovec, Oct 26 2019

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) option remember; `if`(n<4, 0, sigma(n)-1-n) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(g(i), j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    nmax = 47; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k] - k - 1), {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d == 1, 0, (-1)^(k/d + 1) d (DivisorSigma[1, d] - d - 1)], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 47}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A048050(k).
a(n) ~ exp(3*(2*(Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3)/4 - Pi^2 * n^(1/3) / (2^(7/3) * ((Pi^2 - 6)*Zeta(3))^(1/3)) - Pi^4 / (96*(Pi^2 - 6)*Zeta(3))) * 2^(19/24) * ((Pi^2 - 6)*Zeta(3))^(1/6) / (sqrt(3*Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 26 2019

A331037 Numbers k such that the sum of the divisors of k (except for 1 and k) plus the sum of the digits of k is equal to k.

Original entry on oeis.org

1, 2, 3, 5, 7, 14, 52, 76, 2528, 9536, 9664, 35456, 138496, 8456192, 33665024, 33673216, 537444352, 2148958208, 137454419968
Offset: 1

Views

Author

Joseph E. Marrow, Jan 08 2020

Keywords

Comments

Additional terms include 537444352, 2148958208, 137454419968, 35184644718592, 9007202811510784. Are there any terms > 1 not of the form 2^k*p where p is prime and k>0? - David A. Corneth, Jan 08 2020
Terms not of the form 2^k*p do exist, for example 2^15*65713*24194197 and 2^19*1739719*2639431. - Giovanni Resta, Jan 08 2020
a(20) > 10^13. - Giovanni Resta, Jan 14 2020

Examples

			The first term that is not 1 or a single-digit prime is obtained by adding the proper divisors of 14 other than 1 (2,7) to its digits (1,4): (2+7) + (1+4) = 14.
The second such term is 52: the proper divisors of 52 other than 1 (2,4,13,26) and its digits (5,2) sum to (2+4+13+26) + (5+2) = 52.
		

Crossrefs

Cf. A331093 (sum of divisors - digit sum = the number).

Programs

  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] - # - If[# == 1, 0, 1] + Plus @@ IntegerDigits[#] == # &] (* Amiram Eldar, Jan 12 2020 *)
  • PARI
    is(n) = n == sigma(n)-1-if(n>1,n,0)+sumdigits(n) \\ Rémy Sigrist, Jan 08 2020

Extensions

a(14)-a(16) from Rémy Sigrist, Jan 08 2020
a(17)-a(19) from Giovanni Resta, Jan 14 2020

A331093 Numbers such that the sum of their divisors, excluding 1 and the number itself, minus the sum of their digits equals the number.

Original entry on oeis.org

12, 114256, 6988996, 8499988, 8689996, 8789788, 8877988, 8988868, 8999956, 9696988, 9759988, 9899596, 9948988, 9996868, 9998884, 9999892, 15996988, 16878988, 17799796, 17887996, 17988796, 17999884, 18579988, 18768988, 18869788, 18895996, 18958996, 18995788, 19398988, 19587988, 19698868, 19777996, 19799668
Offset: 1

Views

Author

Joseph E. Marrow, Jan 08 2020

Keywords

Comments

After the second term, it seems that the digit sum is 55.
All terms after a(2) appear to be of the form 2^2 * 7 * p, where p is a prime. - Scott R. Shannon, Jan 09 2020
If there exists a third term not of the form 2^2*7*p, it is larger than 10^13. - Giovanni Resta, Jan 14 2020

Examples

			a(3) = 6988996 as the sum of the divisors of 6988996, excluding 1 and 6988996, equals 6989051, the sum of its digits equals 55, and 6989051 - 55 = 6988996.
		

Crossrefs

Cf. A331037 (sum of divisors + digit sum = number).

Programs

  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] - Plus @@ IntegerDigits[#] == 2 # + 1 &] (* Amiram Eldar, Jan 08 2020 *)
  • PARI
    isok(n) = sigma(n) - n - 1 - sumdigits(n) == n; \\ Michel Marcus, Jan 09 2020

Extensions

Terms a(7) and beyond from Scott R. Shannon, Jan 09 2020

A335022 a(n) = Sum_{d|n, 1 < d < n} (-1)^(d + 1) * d.

Original entry on oeis.org

0, 0, 0, -2, 0, 1, 0, -6, 3, 3, 0, -9, 0, 5, 8, -14, 0, 4, 0, -11, 10, 9, 0, -29, 5, 11, 12, -13, 0, 5, 0, -30, 14, 15, 12, -30, 0, 17, 16, -39, 0, 9, 0, -17, 32, 21, 0, -69, 7, 18, 20, -19, 0, 13, 16, -49, 22, 27, 0, -61, 0, 29, 40, -62, 18, 17, 0, -23, 26, 21, 0, -98, 0, 35, 48, -25
Offset: 1

Views

Author

Ilya Gutkovskiy, May 19 2020

Keywords

Comments

Difference between the sum of the odd nontrivial divisors of n and the sum of the even nontrivial divisors of n.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(# + 1) # &, 1 < # < n &], {n, 1, 76}]
    nmax = 76; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(2 k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d>1) && (dMichel Marcus, May 20 2020

Formula

G.f.: Sum_{k>=2} (-1)^(k + 1) * k * x^(2*k) / (1 - x^k).
Previous Showing 61-70 of 95 results. Next