A216982
Anti-Chowla's function: sum of anti-divisors of n except the largest.
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 5, 3, 2, 7, 5, 5, 10, 7, 8, 3, 17, 16, 5, 11, 8, 21, 19, 7, 22, 7, 24, 27, 5, 16, 21, 37, 26, 7, 29, 8, 25, 45, 26, 28, 14, 38, 27, 11, 56, 27, 29, 24, 39, 47, 8, 59, 53, 16, 37, 19, 36, 57, 51, 67, 16, 37, 70, 3, 41, 42, 87, 67, 8, 55
Offset: 1
Anti-divisors of 7 are 2, 3, 5, so a(7) = 2 + 3 = 5.
A218767
Total number of divisors and anti-divisors of n.
Original entry on oeis.org
1, 2, 3, 4, 4, 5, 5, 6, 5, 7, 5, 8, 6, 7, 7, 7, 7, 10, 5, 9, 7, 9, 7, 10, 8, 7, 9, 11, 5, 11, 7, 12, 9, 7, 9, 11, 7, 11, 9, 12, 6, 13, 7, 9, 13, 9, 7, 13, 9, 12, 7, 13, 9, 11, 9, 11, 9, 11, 9, 18, 6, 9, 13, 9, 9, 13, 11, 13, 7, 13, 7, 18, 9, 9, 11, 11, 13, 13, 5, 15, 11, 11, 9, 16, 12, 9
Offset: 1
A239313
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros, except the first column which lists 0 together with the nonnegative integers, and the first element of column k is in row k*(k+1)/2.
Original entry on oeis.org
0, 0, 1, 1, 2, 0, 3, 3, 4, 0, 1, 5, 5, 0, 6, 0, 0, 7, 7, 3, 8, 0, 0, 1, 9, 9, 0, 0, 10, 0, 5, 0, 11, 11, 0, 0, 12, 0, 0, 3, 13, 13, 7, 0, 1, 14, 0, 0, 0, 0, 15, 15, 0, 0, 0, 16, 0, 9, 5, 0, 17, 17, 0, 0, 0, 18, 0, 0, 0, 3, 19, 19, 11, 0, 0, 1, 20, 0, 0, 7, 0, 0
Offset: 1
Triangle begins (row n = 1..24):
0;
0;
1, 1;
2, 0;
3, 3;
4, 0, 1;
5, 5, 0;
6, 0, 0;
7, 7, 3;
8, 0, 0, 1;
9, 9, 0, 0;
10, 0, 5, 0;
11, 11, 0, 0;
12, 0, 0, 3;
13, 13, 7, 0, 1;
14, 0, 0, 0, 0;
15, 15, 0, 0, 0;
16, 0, 9, 5, 0;
17, 17, 0, 0, 0;
18, 0, 0, 0, 3;
19, 19, 11, 0, 0, 1;
20, 0, 0, 7, 0, 0;
21, 21, 0, 0, 0, 0;
22, 0, 13, 0, 0, 0;
...
For n = 15 the divisors of 15 are 1, 3, 5, 15 therefore the sum of divisors of 15 except 1 and 15 is 3 + 5 = 8. On the other hand the 15th row of triangle is 13, 13, 7, 0, 1, hence the alternating row sum is 13 - 13 + 7 - 0 + 1 = 8, equalling the sum of divisors of 15 except 1 and 15.
If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of divisors of n, except 1 and n. Example: the sum of divisors of 24 except 1 and 24 is 2 + 3 + 4 + 6 + 8 + 12 = 35, and the alternating sum of the 24th row of triangle is 22 - 0 + 13 - 0 + 0 - 0 = 35.
Cf.
A000203,
A000217,
A001065,
A001227,
A001477,
A193356,
A196020,
A211343,
A212119,
A228813,
A231345,
A231347,
A235791,
A235794,
A236104,
A236106,
A236112.
A261023
Least number k such that prime(n) = sigma(k) - k - 1.
Original entry on oeis.org
4, 9, 6, 10, 121, 22, 289, 34, 529, 841, 58, 1369, 30, 82, 2209, 42, 3481, 118, 4489, 5041, 70, 6241, 6889, 78, 9409, 10201, 202, 60, 214, 102, 16129, 17161, 18769, 84, 138, 298, 24649, 26569, 27889, 29929, 32041, 358, 36481, 238, 186, 394, 44521, 49729, 51529
Offset: 1
sigma(2) = 3 and 4 is the least number such that sigma(4) - 4 = 7 - 4 = 3.
sigma(13) = 14 and 22 is the least number such that sigma(22) - 22 = 36 - 22 = 14.
-
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do
if isprime(n) then for k from 1 to q do
if sigma(n)=sigma(k)-k then print(k); break; fi; od;
fi; od; end: P(10^9);
-
Table[k = 1; While[DivisorSigma[1, Prime@ p] != DivisorSigma[1, k] - k, k++]; k, {p, 60}] (* Michael De Vlieger, Aug 07 2015 *)
-
a(n) = my(k = 1, p = prime(n)); while(sigma(k)-k-1 != p, k++); k; \\ Michel Marcus, Aug 12 2015
-
first(m)=my(v=vector(m),k);for(i=1,m,k=1;while(!(prime(i)==sigma(k)-k-1),k++);v[i]=k;);v; \\ Anders Hellström, Aug 14 2015
A288654
a(n) = (sigma(n)-n-1)*(3-omega(n)).
Original entry on oeis.org
-3, 0, 0, 4, 0, 5, 0, 12, 6, 7, 0, 15, 0, 9, 8, 28, 0, 20, 0, 21, 10, 13, 0, 35, 10, 15, 24, 27, 0, 0, 0, 60, 14, 19, 12, 54, 0, 21, 16, 49, 0, 0, 0, 39, 32, 25, 0, 75, 14, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 0, 0, 33, 40, 124, 18, 0, 0, 57, 26, 0, 0, 122
Offset: 1
-
Table[(DivisorSigma[1, n] - n - 1) (3 - PrimeNu[n]), {n, 100}]
-
A288654(n) = ((sigma(n)-n-1)*(3-omega(n))); \\ Antti Karttunen, Mar 04 2018
A326830
Expansion of Product_{i>=2, j>=2} 1 / (1 - x^(i*j))^j.
Original entry on oeis.org
1, 0, 0, 0, 2, 0, 5, 0, 9, 3, 17, 0, 46, 6, 68, 23, 153, 27, 297, 67, 534, 188, 978, 276, 1932, 620, 3250, 1313, 6033, 2246, 10854, 4361, 18776, 8639, 32831, 14835, 58230, 27635, 98052, 50980, 169522, 88243, 289720, 157179, 486232, 280206, 818006, 478014
Offset: 0
-
with(numtheory):
b:= proc(n) option remember; `if`(n<4, 0, sigma(n)-1-n) end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Oct 20 2019
-
nmax = 47; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k] - k - 1), {k, 2, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d == 1, 0, d (DivisorSigma[1, d] - d - 1)], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 47}]
A326831
Expansion of Product_{i>=2, j>=2} (1 + x^(i*j))^j.
Original entry on oeis.org
1, 0, 0, 0, 2, 0, 5, 0, 7, 3, 17, 0, 37, 6, 58, 23, 120, 21, 235, 67, 390, 161, 726, 230, 1349, 521, 2225, 1055, 3990, 1714, 7040, 3341, 11604, 6294, 20053, 10500, 34252, 19115, 56055, 34168, 94306, 56998, 157078, 99515, 254766, 171484, 419287, 283565
Offset: 0
-
with(numtheory):
g:= proc(n) option remember; `if`(n<4, 0, sigma(n)-1-n) end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*binomial(g(i), j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Oct 20 2019
-
nmax = 47; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k] - k - 1), {k, 2, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d == 1, 0, (-1)^(k/d + 1) d (DivisorSigma[1, d] - d - 1)], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 47}]
A331037
Numbers k such that the sum of the divisors of k (except for 1 and k) plus the sum of the digits of k is equal to k.
Original entry on oeis.org
1, 2, 3, 5, 7, 14, 52, 76, 2528, 9536, 9664, 35456, 138496, 8456192, 33665024, 33673216, 537444352, 2148958208, 137454419968
Offset: 1
The first term that is not 1 or a single-digit prime is obtained by adding the proper divisors of 14 other than 1 (2,7) to its digits (1,4): (2+7) + (1+4) = 14.
The second such term is 52: the proper divisors of 52 other than 1 (2,4,13,26) and its digits (5,2) sum to (2+4+13+26) + (5+2) = 52.
Cf.
A331093 (sum of divisors - digit sum = the number).
-
Select[Range[10^7], DivisorSigma[1, #] - # - If[# == 1, 0, 1] + Plus @@ IntegerDigits[#] == # &] (* Amiram Eldar, Jan 12 2020 *)
-
is(n) = n == sigma(n)-1-if(n>1,n,0)+sumdigits(n) \\ Rémy Sigrist, Jan 08 2020
A331093
Numbers such that the sum of their divisors, excluding 1 and the number itself, minus the sum of their digits equals the number.
Original entry on oeis.org
12, 114256, 6988996, 8499988, 8689996, 8789788, 8877988, 8988868, 8999956, 9696988, 9759988, 9899596, 9948988, 9996868, 9998884, 9999892, 15996988, 16878988, 17799796, 17887996, 17988796, 17999884, 18579988, 18768988, 18869788, 18895996, 18958996, 18995788, 19398988, 19587988, 19698868, 19777996, 19799668
Offset: 1
a(3) = 6988996 as the sum of the divisors of 6988996, excluding 1 and 6988996, equals 6989051, the sum of its digits equals 55, and 6989051 - 55 = 6988996.
Cf.
A331037 (sum of divisors + digit sum = number).
-
Select[Range[10^7], DivisorSigma[1, #] - Plus @@ IntegerDigits[#] == 2 # + 1 &] (* Amiram Eldar, Jan 08 2020 *)
-
isok(n) = sigma(n) - n - 1 - sumdigits(n) == n; \\ Michel Marcus, Jan 09 2020
A335022
a(n) = Sum_{d|n, 1 < d < n} (-1)^(d + 1) * d.
Original entry on oeis.org
0, 0, 0, -2, 0, 1, 0, -6, 3, 3, 0, -9, 0, 5, 8, -14, 0, 4, 0, -11, 10, 9, 0, -29, 5, 11, 12, -13, 0, 5, 0, -30, 14, 15, 12, -30, 0, 17, 16, -39, 0, 9, 0, -17, 32, 21, 0, -69, 7, 18, 20, -19, 0, 13, 16, -49, 22, 27, 0, -61, 0, 29, 40, -62, 18, 17, 0, -23, 26, 21, 0, -98, 0, 35, 48, -25
Offset: 1
-
Table[DivisorSum[n, (-1)^(# + 1) # &, 1 < # < n &], {n, 1, 76}]
nmax = 76; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(2 k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
-
a(n) = sumdiv(n, d, if ((d>1) && (dMichel Marcus, May 20 2020
Comments